(NiCo2)0.95Fe0.05-MoS2分级纳米结构:协同电子相互作用工程在碱性析氧催化中的应用

IF 7.5 1区 工程技术 Q2 ENERGY & FUELS
Fuel Pub Date : 2025-06-21 DOI:10.1016/j.fuel.2025.136015
Yuxue Dai , Xueying Wang , Dayong Song , Yu Shi , Di Wang , Pengfei Wang , Chuannan Luo , Xiaowen Wu
{"title":"(NiCo2)0.95Fe0.05-MoS2分级纳米结构:协同电子相互作用工程在碱性析氧催化中的应用","authors":"Yuxue Dai ,&nbsp;Xueying Wang ,&nbsp;Dayong Song ,&nbsp;Yu Shi ,&nbsp;Di Wang ,&nbsp;Pengfei Wang ,&nbsp;Chuannan Luo ,&nbsp;Xiaowen Wu","doi":"10.1016/j.fuel.2025.136015","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogen generation <em>via</em> electrolysis of water has become a preferred route for clean H<sub>2</sub> production, combining process efficiency and environmental benignity. However, due to the high overpotential generated by the oxygen evolution reaction (OER), the energy conversion efficiency is seriously reduced during the electrolysis of water. (NiCo<sub>2</sub>)<sub>0.95</sub>Fe<sub>0.05</sub> nanoflowers loaded with MoS<sub>2</sub> nanosheets were synthesized <em>via</em> in-situ grown method denoted as (NiCo<sub>2</sub>)<sub>0.95</sub>Fe<sub>0.05</sub>-MoS<sub>2</sub>. (NiCo<sub>2</sub>)<sub>0.95</sub>Fe<sub>0.05</sub>-MoS<sub>2</sub> electro catalyst only required an overpotential of 275 mV to achieve the current density of 10 mA·cm<sup>−2</sup> in alkaline solution, which were superior to commercial IrO<sub>2</sub> catalysts. The remarkably low Tafel slope of 20.58 mV·dec<sup>-1</sup> further indicated accelerated reaction kinetics, while the flower-like structure formed by the interconnected vertical nanosheets could provide abundant catalytic active sites. The robust electronic coupling interaction between (NiCo<sub>2</sub>)<sub>0.95</sub>Fe<sub>0.05</sub> nanoflowers architecture and MoS<sub>2</sub> nanosheets effectively modulated the surface electronic configuration of the hybrid catalyst. This synergistic engineering strategy not only improved charge transfer efficiency but also generated electrochemically active sites, ultimately leading to superior OER performance of the electro catalysts. This provided an idea for improving the OER electro catalyst performance of MoS<sub>2</sub> nanosheets in an alkaline environment.</div></div>","PeriodicalId":325,"journal":{"name":"Fuel","volume":"402 ","pages":"Article 136015"},"PeriodicalIF":7.5000,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"(NiCo2)0.95Fe0.05-MoS2 hierarchical nanostructure: Synergistic electronic interaction engineering for superior alkaline oxygen evolution catalysis\",\"authors\":\"Yuxue Dai ,&nbsp;Xueying Wang ,&nbsp;Dayong Song ,&nbsp;Yu Shi ,&nbsp;Di Wang ,&nbsp;Pengfei Wang ,&nbsp;Chuannan Luo ,&nbsp;Xiaowen Wu\",\"doi\":\"10.1016/j.fuel.2025.136015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hydrogen generation <em>via</em> electrolysis of water has become a preferred route for clean H<sub>2</sub> production, combining process efficiency and environmental benignity. However, due to the high overpotential generated by the oxygen evolution reaction (OER), the energy conversion efficiency is seriously reduced during the electrolysis of water. (NiCo<sub>2</sub>)<sub>0.95</sub>Fe<sub>0.05</sub> nanoflowers loaded with MoS<sub>2</sub> nanosheets were synthesized <em>via</em> in-situ grown method denoted as (NiCo<sub>2</sub>)<sub>0.95</sub>Fe<sub>0.05</sub>-MoS<sub>2</sub>. (NiCo<sub>2</sub>)<sub>0.95</sub>Fe<sub>0.05</sub>-MoS<sub>2</sub> electro catalyst only required an overpotential of 275 mV to achieve the current density of 10 mA·cm<sup>−2</sup> in alkaline solution, which were superior to commercial IrO<sub>2</sub> catalysts. The remarkably low Tafel slope of 20.58 mV·dec<sup>-1</sup> further indicated accelerated reaction kinetics, while the flower-like structure formed by the interconnected vertical nanosheets could provide abundant catalytic active sites. The robust electronic coupling interaction between (NiCo<sub>2</sub>)<sub>0.95</sub>Fe<sub>0.05</sub> nanoflowers architecture and MoS<sub>2</sub> nanosheets effectively modulated the surface electronic configuration of the hybrid catalyst. This synergistic engineering strategy not only improved charge transfer efficiency but also generated electrochemically active sites, ultimately leading to superior OER performance of the electro catalysts. This provided an idea for improving the OER electro catalyst performance of MoS<sub>2</sub> nanosheets in an alkaline environment.</div></div>\",\"PeriodicalId\":325,\"journal\":{\"name\":\"Fuel\",\"volume\":\"402 \",\"pages\":\"Article 136015\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuel\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0016236125017405\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016236125017405","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

结合工艺效率和环境友好性,电解水制氢已成为清洁制氢的首选途径。然而,由于析氧反应(OER)产生的高过电位,使水在电解过程中能量转换效率严重降低。采用原位生长法合成了负载MoS2纳米片的(NiCo2)0.95Fe0.05纳米花,命名为(NiCo2)0.95Fe0.05-MoS2。(NiCo2)0.95Fe0.05-MoS2电催化剂在碱性溶液中仅需275 mV过电位即可达到10 mA·cm−2的电流密度,优于工业IrO2催化剂。20.58 mV·dec1的低Tafel斜率进一步表明了加速的反应动力学,而垂直互连纳米片形成的花状结构可以提供丰富的催化活性位点。(NiCo2)0.95Fe0.05纳米花结构与MoS2纳米片之间的强大电子耦合相互作用有效地调节了杂化催化剂的表面电子构型。这种协同工程策略不仅提高了电荷转移效率,而且产生了电化学活性位点,最终使电催化剂具有优越的OER性能。这为提高MoS2纳米片在碱性环境下的OER电催化性能提供了思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
(NiCo2)0.95Fe0.05-MoS2 hierarchical nanostructure: Synergistic electronic interaction engineering for superior alkaline oxygen evolution catalysis
Hydrogen generation via electrolysis of water has become a preferred route for clean H2 production, combining process efficiency and environmental benignity. However, due to the high overpotential generated by the oxygen evolution reaction (OER), the energy conversion efficiency is seriously reduced during the electrolysis of water. (NiCo2)0.95Fe0.05 nanoflowers loaded with MoS2 nanosheets were synthesized via in-situ grown method denoted as (NiCo2)0.95Fe0.05-MoS2. (NiCo2)0.95Fe0.05-MoS2 electro catalyst only required an overpotential of 275 mV to achieve the current density of 10 mA·cm−2 in alkaline solution, which were superior to commercial IrO2 catalysts. The remarkably low Tafel slope of 20.58 mV·dec-1 further indicated accelerated reaction kinetics, while the flower-like structure formed by the interconnected vertical nanosheets could provide abundant catalytic active sites. The robust electronic coupling interaction between (NiCo2)0.95Fe0.05 nanoflowers architecture and MoS2 nanosheets effectively modulated the surface electronic configuration of the hybrid catalyst. This synergistic engineering strategy not only improved charge transfer efficiency but also generated electrochemically active sites, ultimately leading to superior OER performance of the electro catalysts. This provided an idea for improving the OER electro catalyst performance of MoS2 nanosheets in an alkaline environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fuel
Fuel 工程技术-工程:化工
CiteScore
12.80
自引率
20.30%
发文量
3506
审稿时长
64 days
期刊介绍: The exploration of energy sources remains a critical matter of study. For the past nine decades, fuel has consistently held the forefront in primary research efforts within the field of energy science. This area of investigation encompasses a wide range of subjects, with a particular emphasis on emerging concerns like environmental factors and pollution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信