{"title":"利用溶剂间协同效应构建全天候混合动力钠离子/金属电池","authors":"Yiwen Gao, Haifeng Tu, Jiangyan Xue, Yan Wang, Shiqi Zhang, Suwan Lu, Lingwang Liu, Keyang Peng, Guochao Sun, Guangye Wu, Peng Ding, Yi Yang, Zhicheng Wang, Jingjing Xu, Xiaodong Wu","doi":"10.1021/acsenergylett.5c01080","DOIUrl":null,"url":null,"abstract":"Rechargeable sodium ion batteries (SIBs) under extreme conditions are still limited by sluggish Na<sup>+</sup> transport/desolvation kinetics and unstable electrode/electrolyte interface, thus leading to rapid capacity decay and a short lifespan. Herein, electrolyte engineering is proposed via solvent–solvent hydrogen bonding interaction between dimethyl sulfite (DMS) and glutaronitrile (GN) solvents for wide-temperature SIBs. The formed hydrogen bonding between DMS and GN solvents not only enhances the antioxidative ability of DMS but also simultaneously promotes the formation of a loose solvation structure by distancing DMS from Na<sup>+</sup> ions, facilitating Na<sup>+</sup> transport/desolvation kinetics. The well-designed electrolyte exhibits wide-temperature application from −55 to 60 °C in NaNi<sub>0.33</sub>Fe<sub>0.33</sub>Mn<sub>0.33</sub>O<sub>2</sub> ||Na half cells, while the improved cycling stability with preactivated hard carbon anode is also obtained from −40 to 45 °C. This work sheds light on intersolvent synergistic effect for wide-temperature electrolyte design, specializing in regulating electrolyte thermodynamic and kinetic behavior.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"15 1","pages":""},"PeriodicalIF":19.3000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constructing All-Climate Hybrid Sodium Ion/Metal Batteries through Intersolvent Synergistic Effect\",\"authors\":\"Yiwen Gao, Haifeng Tu, Jiangyan Xue, Yan Wang, Shiqi Zhang, Suwan Lu, Lingwang Liu, Keyang Peng, Guochao Sun, Guangye Wu, Peng Ding, Yi Yang, Zhicheng Wang, Jingjing Xu, Xiaodong Wu\",\"doi\":\"10.1021/acsenergylett.5c01080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rechargeable sodium ion batteries (SIBs) under extreme conditions are still limited by sluggish Na<sup>+</sup> transport/desolvation kinetics and unstable electrode/electrolyte interface, thus leading to rapid capacity decay and a short lifespan. Herein, electrolyte engineering is proposed via solvent–solvent hydrogen bonding interaction between dimethyl sulfite (DMS) and glutaronitrile (GN) solvents for wide-temperature SIBs. The formed hydrogen bonding between DMS and GN solvents not only enhances the antioxidative ability of DMS but also simultaneously promotes the formation of a loose solvation structure by distancing DMS from Na<sup>+</sup> ions, facilitating Na<sup>+</sup> transport/desolvation kinetics. The well-designed electrolyte exhibits wide-temperature application from −55 to 60 °C in NaNi<sub>0.33</sub>Fe<sub>0.33</sub>Mn<sub>0.33</sub>O<sub>2</sub> ||Na half cells, while the improved cycling stability with preactivated hard carbon anode is also obtained from −40 to 45 °C. This work sheds light on intersolvent synergistic effect for wide-temperature electrolyte design, specializing in regulating electrolyte thermodynamic and kinetic behavior.\",\"PeriodicalId\":16,\"journal\":{\"name\":\"ACS Energy Letters \",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":19.3000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Energy Letters \",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsenergylett.5c01080\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.5c01080","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Constructing All-Climate Hybrid Sodium Ion/Metal Batteries through Intersolvent Synergistic Effect
Rechargeable sodium ion batteries (SIBs) under extreme conditions are still limited by sluggish Na+ transport/desolvation kinetics and unstable electrode/electrolyte interface, thus leading to rapid capacity decay and a short lifespan. Herein, electrolyte engineering is proposed via solvent–solvent hydrogen bonding interaction between dimethyl sulfite (DMS) and glutaronitrile (GN) solvents for wide-temperature SIBs. The formed hydrogen bonding between DMS and GN solvents not only enhances the antioxidative ability of DMS but also simultaneously promotes the formation of a loose solvation structure by distancing DMS from Na+ ions, facilitating Na+ transport/desolvation kinetics. The well-designed electrolyte exhibits wide-temperature application from −55 to 60 °C in NaNi0.33Fe0.33Mn0.33O2 ||Na half cells, while the improved cycling stability with preactivated hard carbon anode is also obtained from −40 to 45 °C. This work sheds light on intersolvent synergistic effect for wide-temperature electrolyte design, specializing in regulating electrolyte thermodynamic and kinetic behavior.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.