Wenxuan Huang, Feng Wang, Yinglong Su, Haining Huang, Jingyang Luo
{"title":"被低估的噬菌体在生物废水处理系统中的作用:最新进展和挑战","authors":"Wenxuan Huang, Feng Wang, Yinglong Su, Haining Huang, Jingyang Luo","doi":"10.1016/j.jhazmat.2025.139007","DOIUrl":null,"url":null,"abstract":"Bacteriophages (phages) are vital components in biological wastewater ecosystems, whose concentrations are far exceeding those bacteria. Despite their importance, they are often overlooked and regarded as the \"dark matter\" in biological treatment processes. Phages play a pivotal role in shaping the dynamic evolution of host microbial communities within wastewater treatment plants (WWTPs), driving their functional evolution through interactions with host microorganisms. Phages are crucial in driving microbial ecological dynamics and regulating metabolic functions. At the macroscopic scale, the organic matters released through viral shunting demonstrate enhanced bioavailability and facilitated organic element cycling based on viral shuttle-mediated bio-pump. Additionally, at the micro-scale, gene transfer mediated by phages can assist functional microorganisms in enhancing metabolic efficiency and adapting to environmental stress. However, this process also introduces environmental risks, particularly the dissemination of antibiotic resistance genes through horizontal gene transfer and plasmids. Phages offer distinct advantages over conventional chemical and physical methods, including superior efficiency and environmental sustainability. Nonetheless, the development of phage-based biocontrol strategies is constrained by phage specificity and the complexity of biological treatment systems. Recent advances in artificial intelligence and genetic technologies provide promising avenues for optimizing phage applications. Further research into phage ecology is essential to lay a theoretical foundation for enhancing operational stability, treatment efficiency, and targeted biocontrol strategies.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"145 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Underestimated Roles of Phages in Biological Wastewater Treatment Systems: Recent Advances and Challenges\",\"authors\":\"Wenxuan Huang, Feng Wang, Yinglong Su, Haining Huang, Jingyang Luo\",\"doi\":\"10.1016/j.jhazmat.2025.139007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bacteriophages (phages) are vital components in biological wastewater ecosystems, whose concentrations are far exceeding those bacteria. Despite their importance, they are often overlooked and regarded as the \\\"dark matter\\\" in biological treatment processes. Phages play a pivotal role in shaping the dynamic evolution of host microbial communities within wastewater treatment plants (WWTPs), driving their functional evolution through interactions with host microorganisms. Phages are crucial in driving microbial ecological dynamics and regulating metabolic functions. At the macroscopic scale, the organic matters released through viral shunting demonstrate enhanced bioavailability and facilitated organic element cycling based on viral shuttle-mediated bio-pump. Additionally, at the micro-scale, gene transfer mediated by phages can assist functional microorganisms in enhancing metabolic efficiency and adapting to environmental stress. However, this process also introduces environmental risks, particularly the dissemination of antibiotic resistance genes through horizontal gene transfer and plasmids. Phages offer distinct advantages over conventional chemical and physical methods, including superior efficiency and environmental sustainability. Nonetheless, the development of phage-based biocontrol strategies is constrained by phage specificity and the complexity of biological treatment systems. Recent advances in artificial intelligence and genetic technologies provide promising avenues for optimizing phage applications. Further research into phage ecology is essential to lay a theoretical foundation for enhancing operational stability, treatment efficiency, and targeted biocontrol strategies.\",\"PeriodicalId\":361,\"journal\":{\"name\":\"Journal of Hazardous Materials\",\"volume\":\"145 1\",\"pages\":\"\"},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hazardous Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jhazmat.2025.139007\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.139007","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Underestimated Roles of Phages in Biological Wastewater Treatment Systems: Recent Advances and Challenges
Bacteriophages (phages) are vital components in biological wastewater ecosystems, whose concentrations are far exceeding those bacteria. Despite their importance, they are often overlooked and regarded as the "dark matter" in biological treatment processes. Phages play a pivotal role in shaping the dynamic evolution of host microbial communities within wastewater treatment plants (WWTPs), driving their functional evolution through interactions with host microorganisms. Phages are crucial in driving microbial ecological dynamics and regulating metabolic functions. At the macroscopic scale, the organic matters released through viral shunting demonstrate enhanced bioavailability and facilitated organic element cycling based on viral shuttle-mediated bio-pump. Additionally, at the micro-scale, gene transfer mediated by phages can assist functional microorganisms in enhancing metabolic efficiency and adapting to environmental stress. However, this process also introduces environmental risks, particularly the dissemination of antibiotic resistance genes through horizontal gene transfer and plasmids. Phages offer distinct advantages over conventional chemical and physical methods, including superior efficiency and environmental sustainability. Nonetheless, the development of phage-based biocontrol strategies is constrained by phage specificity and the complexity of biological treatment systems. Recent advances in artificial intelligence and genetic technologies provide promising avenues for optimizing phage applications. Further research into phage ecology is essential to lay a theoretical foundation for enhancing operational stability, treatment efficiency, and targeted biocontrol strategies.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.