LiNi0.46Mn1.54O4合成过程中的相平衡:x射线和中子粉末衍射综合研究

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Ilia Tertov, François Fauth, Emmanuelle Suard, Thomas Hansen, François Weill, Pierre-Etienne Cabelguen, Christian Masquelier and Laurence Croguennec
{"title":"LiNi0.46Mn1.54O4合成过程中的相平衡:x射线和中子粉末衍射综合研究","authors":"Ilia Tertov, François Fauth, Emmanuelle Suard, Thomas Hansen, François Weill, Pierre-Etienne Cabelguen, Christian Masquelier and Laurence Croguennec","doi":"10.1039/D5TA01514F","DOIUrl":null,"url":null,"abstract":"<p >A combination of synchrotron X-ray powder diffraction (SXRPD) and neutron powder diffraction (NPD) is used to investigate phase equilibrium during the synthesis of LiNi<small><sub>0.46</sub></small>Mn<small><sub>1.54</sub></small>O<small><sub>4</sub></small> (LNMO) powders from a reagent mixture. A Li-deficient disordered LNMO begins to form at <em>T</em> ≈ 460 °C and as the temperature increases, oxygen release triggers the formation of impurity phases. Advanced structural characterization of quenched LNMO samples, along with <em>in situ</em> SXRPD experiments, reveals that a layered oxide impurity crystallizes between 700 °C and 900 °C. At temperatures of 900 °C and above, this impurity phase transforms into a rock-salt type one, while a Li-rich layered oxide impurity also emerges. This leads to the coexistence of three phases at <em>T</em> ≥ 900 °C: LNMO spinel, rock salt, and Li-rich layered oxide. These transformations affect significantly the composition of the targeted LNMO spinel phase, which highlights the challenges in achieving phase purity with the desired stoichiometry in this complex system. The findings provide valuable insights for optimizing the LNMO synthesis so as to prepare high-performance positive electrode materials.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 28","pages":" 22931-22945"},"PeriodicalIF":9.5000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ta/d5ta01514f?page=search","citationCount":"0","resultStr":"{\"title\":\"Phase equilibrium during the synthesis of LiNi0.46Mn1.54O4: comprehensive X-ray & neutron powder diffraction study†\",\"authors\":\"Ilia Tertov, François Fauth, Emmanuelle Suard, Thomas Hansen, François Weill, Pierre-Etienne Cabelguen, Christian Masquelier and Laurence Croguennec\",\"doi\":\"10.1039/D5TA01514F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >A combination of synchrotron X-ray powder diffraction (SXRPD) and neutron powder diffraction (NPD) is used to investigate phase equilibrium during the synthesis of LiNi<small><sub>0.46</sub></small>Mn<small><sub>1.54</sub></small>O<small><sub>4</sub></small> (LNMO) powders from a reagent mixture. A Li-deficient disordered LNMO begins to form at <em>T</em> ≈ 460 °C and as the temperature increases, oxygen release triggers the formation of impurity phases. Advanced structural characterization of quenched LNMO samples, along with <em>in situ</em> SXRPD experiments, reveals that a layered oxide impurity crystallizes between 700 °C and 900 °C. At temperatures of 900 °C and above, this impurity phase transforms into a rock-salt type one, while a Li-rich layered oxide impurity also emerges. This leads to the coexistence of three phases at <em>T</em> ≥ 900 °C: LNMO spinel, rock salt, and Li-rich layered oxide. These transformations affect significantly the composition of the targeted LNMO spinel phase, which highlights the challenges in achieving phase purity with the desired stoichiometry in this complex system. The findings provide valuable insights for optimizing the LNMO synthesis so as to prepare high-performance positive electrode materials.</p>\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\" 28\",\"pages\":\" 22931-22945\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ta/d5ta01514f?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d5ta01514f\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d5ta01514f","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

采用同步加速器x射线粉末衍射(SXRPD)和中子粉末衍射(NPD)相结合的方法研究了从混合试剂合成LiNi0.46Mn1.54O4 (LNMO)粉末过程中的相平衡。缺锂无序LNMO在T≈460℃时开始形成,随着温度的升高,氧释放触发杂质相的形成。淬火后的LNMO样品的高级结构表征以及原位SXRPD实验表明,层状氧化物杂质在700°C至900°C之间结晶。在900°C及以上的温度下,该杂质相转变为岩盐型,同时出现富锂层状氧化物杂质。这导致在温度≥900℃时共存三种相:LNMO尖晶石、岩盐和富锂层状氧化物。这些转变显著地影响了目标LNMO尖晶石相的组成,这突出了在这个复杂体系中实现具有所需化学计量的相纯度的挑战。研究结果为优化LNMO的合成工艺以制备高性能正极材料提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Phase equilibrium during the synthesis of LiNi0.46Mn1.54O4: comprehensive X-ray & neutron powder diffraction study†

Phase equilibrium during the synthesis of LiNi0.46Mn1.54O4: comprehensive X-ray & neutron powder diffraction study†

Phase equilibrium during the synthesis of LiNi0.46Mn1.54O4: comprehensive X-ray & neutron powder diffraction study†

A combination of synchrotron X-ray powder diffraction (SXRPD) and neutron powder diffraction (NPD) is used to investigate phase equilibrium during the synthesis of LiNi0.46Mn1.54O4 (LNMO) powders from a reagent mixture. A Li-deficient disordered LNMO begins to form at T ≈ 460 °C and as the temperature increases, oxygen release triggers the formation of impurity phases. Advanced structural characterization of quenched LNMO samples, along with in situ SXRPD experiments, reveals that a layered oxide impurity crystallizes between 700 °C and 900 °C. At temperatures of 900 °C and above, this impurity phase transforms into a rock-salt type one, while a Li-rich layered oxide impurity also emerges. This leads to the coexistence of three phases at T ≥ 900 °C: LNMO spinel, rock salt, and Li-rich layered oxide. These transformations affect significantly the composition of the targeted LNMO spinel phase, which highlights the challenges in achieving phase purity with the desired stoichiometry in this complex system. The findings provide valuable insights for optimizing the LNMO synthesis so as to prepare high-performance positive electrode materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信