Hannah J. Rubin, Leyuan Zhang, Joshua S. Fu, Deeksha Rastogi, Shih-Chieh Kao, Moetasim Ashfaq
{"title":"CONUS中动态缩减的季节性热浪预估","authors":"Hannah J. Rubin, Leyuan Zhang, Joshua S. Fu, Deeksha Rastogi, Shih-Chieh Kao, Moetasim Ashfaq","doi":"10.1038/s41612-025-01055-3","DOIUrl":null,"url":null,"abstract":"<p>Heat waves are a well-documented hazard that are projected to increase in intensity, duration, and frequency with climate change. Regions of the US experience widely varying temperatures; for example, 35 °C is extremely hot for spring in the Northeast but not for summer in the Southeast. It is important to evaluate projections within a regional context and at a high enough resolution to understand the risks to populations. We identify heat waves across the Conterminous US (CONUS) under SSP5–8.5 from 2020 to 2059 with an ensemble of dynamically downscaled Coupled Model Intercomparison Project Phase 6 (CMIP6) model outputs. We demonstrate that there are regional differences caused by seasonal and local drivers of persistent hot temperatures. Summer heat waves are increasing in intensity and duration faster than winter heat waves because of the atmospheric conditions that promote these events. Our analysis emphasizes the value of fine-resolution modeling for projecting future climate risks.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"236 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamically downscaled seasonal heat wave projections in the CONUS\",\"authors\":\"Hannah J. Rubin, Leyuan Zhang, Joshua S. Fu, Deeksha Rastogi, Shih-Chieh Kao, Moetasim Ashfaq\",\"doi\":\"10.1038/s41612-025-01055-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Heat waves are a well-documented hazard that are projected to increase in intensity, duration, and frequency with climate change. Regions of the US experience widely varying temperatures; for example, 35 °C is extremely hot for spring in the Northeast but not for summer in the Southeast. It is important to evaluate projections within a regional context and at a high enough resolution to understand the risks to populations. We identify heat waves across the Conterminous US (CONUS) under SSP5–8.5 from 2020 to 2059 with an ensemble of dynamically downscaled Coupled Model Intercomparison Project Phase 6 (CMIP6) model outputs. We demonstrate that there are regional differences caused by seasonal and local drivers of persistent hot temperatures. Summer heat waves are increasing in intensity and duration faster than winter heat waves because of the atmospheric conditions that promote these events. Our analysis emphasizes the value of fine-resolution modeling for projecting future climate risks.</p>\",\"PeriodicalId\":19438,\"journal\":{\"name\":\"npj Climate and Atmospheric Science\",\"volume\":\"236 1\",\"pages\":\"\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Climate and Atmospheric Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1038/s41612-025-01055-3\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41612-025-01055-3","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Dynamically downscaled seasonal heat wave projections in the CONUS
Heat waves are a well-documented hazard that are projected to increase in intensity, duration, and frequency with climate change. Regions of the US experience widely varying temperatures; for example, 35 °C is extremely hot for spring in the Northeast but not for summer in the Southeast. It is important to evaluate projections within a regional context and at a high enough resolution to understand the risks to populations. We identify heat waves across the Conterminous US (CONUS) under SSP5–8.5 from 2020 to 2059 with an ensemble of dynamically downscaled Coupled Model Intercomparison Project Phase 6 (CMIP6) model outputs. We demonstrate that there are regional differences caused by seasonal and local drivers of persistent hot temperatures. Summer heat waves are increasing in intensity and duration faster than winter heat waves because of the atmospheric conditions that promote these events. Our analysis emphasizes the value of fine-resolution modeling for projecting future climate risks.
期刊介绍:
npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols.
The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.