{"title":"费米探测的伽马射线发射热日冕的无线电安静的活动星系核","authors":"Jun-Rong Liu, Jian-Min Wang","doi":"10.1038/s41550-025-02538-2","DOIUrl":null,"url":null,"abstract":"<p>Relativistic jets around supermassive black holes are well-known powerful γ-ray emitters. In the absence of the jets in radio-quiet active galactic nuclei, how the supermassive black holes work in γ-ray bands is still unknown despite great observational efforts in the past three decades. Here, considering the previous efforts, we carefully select an active galactic nucleus sample composed of 37 nearby Seyfert galaxies with ultrahard X-rays for γ-ray detection by excluding all potential contamination in this band. Adopting a stacking technique, we report the significant γ-ray detection (test statistic 30.6, or 5.2<i>σ</i>) from the sample using 15-year Fermi-LAT observations. We find the average γ-ray luminosity of the sample to be (1.5 ± 1.0) × 10<sup>40</sup> erg s<sup>−1</sup> at energies of 1–300 GeV. Limited by the well-known pair production from the interaction of γ-rays with low-energy photons, γ-rays of more than several giga-electronvolts are found to originate from an extended corona (~2.7 × 10<sup>6</sup> gravitational radii), whereas the canonical much more compact X-ray corona (~10 gravitational radii) is responsible for γ-rays of one to several giga-electronvolts. The finding of the compact region lends strong support to the long-time theoretical expectations, but the extended corona is an unexpected finding. One promising scenario is that the electron–positron pairs produced in the compact X-ray corona would expand as a fireball, similar to that in γ-ray bursts, forming the structure of extended corona.</p>","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":"19 1","pages":""},"PeriodicalIF":12.9000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fermi detection of gamma-ray emission from the hot coronae of radio-quiet active galactic nuclei\",\"authors\":\"Jun-Rong Liu, Jian-Min Wang\",\"doi\":\"10.1038/s41550-025-02538-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Relativistic jets around supermassive black holes are well-known powerful γ-ray emitters. In the absence of the jets in radio-quiet active galactic nuclei, how the supermassive black holes work in γ-ray bands is still unknown despite great observational efforts in the past three decades. Here, considering the previous efforts, we carefully select an active galactic nucleus sample composed of 37 nearby Seyfert galaxies with ultrahard X-rays for γ-ray detection by excluding all potential contamination in this band. Adopting a stacking technique, we report the significant γ-ray detection (test statistic 30.6, or 5.2<i>σ</i>) from the sample using 15-year Fermi-LAT observations. We find the average γ-ray luminosity of the sample to be (1.5 ± 1.0) × 10<sup>40</sup> erg s<sup>−1</sup> at energies of 1–300 GeV. Limited by the well-known pair production from the interaction of γ-rays with low-energy photons, γ-rays of more than several giga-electronvolts are found to originate from an extended corona (~2.7 × 10<sup>6</sup> gravitational radii), whereas the canonical much more compact X-ray corona (~10 gravitational radii) is responsible for γ-rays of one to several giga-electronvolts. The finding of the compact region lends strong support to the long-time theoretical expectations, but the extended corona is an unexpected finding. One promising scenario is that the electron–positron pairs produced in the compact X-ray corona would expand as a fireball, similar to that in γ-ray bursts, forming the structure of extended corona.</p>\",\"PeriodicalId\":18778,\"journal\":{\"name\":\"Nature Astronomy\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":12.9000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41550-025-02538-2\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Astronomy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41550-025-02538-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Fermi detection of gamma-ray emission from the hot coronae of radio-quiet active galactic nuclei
Relativistic jets around supermassive black holes are well-known powerful γ-ray emitters. In the absence of the jets in radio-quiet active galactic nuclei, how the supermassive black holes work in γ-ray bands is still unknown despite great observational efforts in the past three decades. Here, considering the previous efforts, we carefully select an active galactic nucleus sample composed of 37 nearby Seyfert galaxies with ultrahard X-rays for γ-ray detection by excluding all potential contamination in this band. Adopting a stacking technique, we report the significant γ-ray detection (test statistic 30.6, or 5.2σ) from the sample using 15-year Fermi-LAT observations. We find the average γ-ray luminosity of the sample to be (1.5 ± 1.0) × 1040 erg s−1 at energies of 1–300 GeV. Limited by the well-known pair production from the interaction of γ-rays with low-energy photons, γ-rays of more than several giga-electronvolts are found to originate from an extended corona (~2.7 × 106 gravitational radii), whereas the canonical much more compact X-ray corona (~10 gravitational radii) is responsible for γ-rays of one to several giga-electronvolts. The finding of the compact region lends strong support to the long-time theoretical expectations, but the extended corona is an unexpected finding. One promising scenario is that the electron–positron pairs produced in the compact X-ray corona would expand as a fireball, similar to that in γ-ray bursts, forming the structure of extended corona.
Nature AstronomyPhysics and Astronomy-Astronomy and Astrophysics
CiteScore
19.50
自引率
2.80%
发文量
252
期刊介绍:
Nature Astronomy, the oldest science, has played a significant role in the history of Nature. Throughout the years, pioneering discoveries such as the first quasar, exoplanet, and understanding of spiral nebulae have been reported in the journal. With the introduction of Nature Astronomy, the field now receives expanded coverage, welcoming research in astronomy, astrophysics, and planetary science. The primary objective is to encourage closer collaboration among researchers in these related areas.
Similar to other journals under the Nature brand, Nature Astronomy boasts a devoted team of professional editors, ensuring fairness and rigorous peer-review processes. The journal maintains high standards in copy-editing and production, ensuring timely publication and editorial independence.
In addition to original research, Nature Astronomy publishes a wide range of content, including Comments, Reviews, News and Views, Features, and Correspondence. This diverse collection covers various disciplines within astronomy and includes contributions from a diverse range of voices.