Fan Liu, Bo Gao, Liran Lei, Shuainan Liu, Hui Li, Ming Guo
{"title":"多细胞组织的孔隙弹性主要由细胞间流动决定","authors":"Fan Liu, Bo Gao, Liran Lei, Shuainan Liu, Hui Li, Ming Guo","doi":"10.1038/s41567-025-02947-0","DOIUrl":null,"url":null,"abstract":"<p>The mechanical characteristics of cells and extracellular matrices—such as elasticity, surface tension and viscosity—can influence diseases such as fibrosis and tumour metastasis. Multicellular tissues have traditionally been modelled as viscoelastic materials, which overlooked the abundance of intercellular space and intercellular flow within the structure. Although intercellular flow can substantially impact development and disease progression, its role in the mechanical behaviour of tissues remains unclear. Here we show that fluid transport via the intercellular space determines the immediate mechanical response of tissues upon deformation. We directly measure the mechanical response of multicellular tissues by applying parallel plate compression via a tailored micro-mechanics platform. We find that both cultured three-dimensional cell spheroids and native mouse pancreatic islets exhibit apparent poroelastic behaviour over a timescale of up to a minute. These findings highlight the fundamental role of interstitial fluid transport in the mechanics of multicellular systems and could help identify potential physical regulators of development and diseases, as well as strategies for engineering multicellular living systems.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"8 1","pages":""},"PeriodicalIF":17.6000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intercellular flow dominates the poroelasticity of multicellular tissues\",\"authors\":\"Fan Liu, Bo Gao, Liran Lei, Shuainan Liu, Hui Li, Ming Guo\",\"doi\":\"10.1038/s41567-025-02947-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The mechanical characteristics of cells and extracellular matrices—such as elasticity, surface tension and viscosity—can influence diseases such as fibrosis and tumour metastasis. Multicellular tissues have traditionally been modelled as viscoelastic materials, which overlooked the abundance of intercellular space and intercellular flow within the structure. Although intercellular flow can substantially impact development and disease progression, its role in the mechanical behaviour of tissues remains unclear. Here we show that fluid transport via the intercellular space determines the immediate mechanical response of tissues upon deformation. We directly measure the mechanical response of multicellular tissues by applying parallel plate compression via a tailored micro-mechanics platform. We find that both cultured three-dimensional cell spheroids and native mouse pancreatic islets exhibit apparent poroelastic behaviour over a timescale of up to a minute. These findings highlight the fundamental role of interstitial fluid transport in the mechanics of multicellular systems and could help identify potential physical regulators of development and diseases, as well as strategies for engineering multicellular living systems.</p>\",\"PeriodicalId\":19100,\"journal\":{\"name\":\"Nature Physics\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":17.6000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41567-025-02947-0\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41567-025-02947-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Intercellular flow dominates the poroelasticity of multicellular tissues
The mechanical characteristics of cells and extracellular matrices—such as elasticity, surface tension and viscosity—can influence diseases such as fibrosis and tumour metastasis. Multicellular tissues have traditionally been modelled as viscoelastic materials, which overlooked the abundance of intercellular space and intercellular flow within the structure. Although intercellular flow can substantially impact development and disease progression, its role in the mechanical behaviour of tissues remains unclear. Here we show that fluid transport via the intercellular space determines the immediate mechanical response of tissues upon deformation. We directly measure the mechanical response of multicellular tissues by applying parallel plate compression via a tailored micro-mechanics platform. We find that both cultured three-dimensional cell spheroids and native mouse pancreatic islets exhibit apparent poroelastic behaviour over a timescale of up to a minute. These findings highlight the fundamental role of interstitial fluid transport in the mechanics of multicellular systems and could help identify potential physical regulators of development and diseases, as well as strategies for engineering multicellular living systems.
期刊介绍:
Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests.
The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.