多细胞组织的孔隙弹性主要由细胞间流动决定

IF 17.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Fan Liu, Bo Gao, Liran Lei, Shuainan Liu, Hui Li, Ming Guo
{"title":"多细胞组织的孔隙弹性主要由细胞间流动决定","authors":"Fan Liu, Bo Gao, Liran Lei, Shuainan Liu, Hui Li, Ming Guo","doi":"10.1038/s41567-025-02947-0","DOIUrl":null,"url":null,"abstract":"<p>The mechanical characteristics of cells and extracellular matrices—such as elasticity, surface tension and viscosity—can influence diseases such as fibrosis and tumour metastasis. Multicellular tissues have traditionally been modelled as viscoelastic materials, which overlooked the abundance of intercellular space and intercellular flow within the structure. Although intercellular flow can substantially impact development and disease progression, its role in the mechanical behaviour of tissues remains unclear. Here we show that fluid transport via the intercellular space determines the immediate mechanical response of tissues upon deformation. We directly measure the mechanical response of multicellular tissues by applying parallel plate compression via a tailored micro-mechanics platform. We find that both cultured three-dimensional cell spheroids and native mouse pancreatic islets exhibit apparent poroelastic behaviour over a timescale of up to a minute. These findings highlight the fundamental role of interstitial fluid transport in the mechanics of multicellular systems and could help identify potential physical regulators of development and diseases, as well as strategies for engineering multicellular living systems.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"8 1","pages":""},"PeriodicalIF":17.6000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intercellular flow dominates the poroelasticity of multicellular tissues\",\"authors\":\"Fan Liu, Bo Gao, Liran Lei, Shuainan Liu, Hui Li, Ming Guo\",\"doi\":\"10.1038/s41567-025-02947-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The mechanical characteristics of cells and extracellular matrices—such as elasticity, surface tension and viscosity—can influence diseases such as fibrosis and tumour metastasis. Multicellular tissues have traditionally been modelled as viscoelastic materials, which overlooked the abundance of intercellular space and intercellular flow within the structure. Although intercellular flow can substantially impact development and disease progression, its role in the mechanical behaviour of tissues remains unclear. Here we show that fluid transport via the intercellular space determines the immediate mechanical response of tissues upon deformation. We directly measure the mechanical response of multicellular tissues by applying parallel plate compression via a tailored micro-mechanics platform. We find that both cultured three-dimensional cell spheroids and native mouse pancreatic islets exhibit apparent poroelastic behaviour over a timescale of up to a minute. These findings highlight the fundamental role of interstitial fluid transport in the mechanics of multicellular systems and could help identify potential physical regulators of development and diseases, as well as strategies for engineering multicellular living systems.</p>\",\"PeriodicalId\":19100,\"journal\":{\"name\":\"Nature Physics\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":17.6000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41567-025-02947-0\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41567-025-02947-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

细胞和细胞外基质的力学特性,如弹性、表面张力和粘度,可以影响纤维化和肿瘤转移等疾病。传统上,多细胞组织被建模为粘弹性材料,忽略了结构内丰富的细胞间空间和细胞间流动。虽然细胞间流动可以实质性地影响发育和疾病进展,但其在组织力学行为中的作用尚不清楚。在这里,我们表明通过细胞间空间的流体运输决定了组织变形时的直接机械反应。我们通过定制的微力学平台,通过平行板压缩直接测量多细胞组织的力学响应。我们发现,培养的三维细胞球体和天然小鼠胰岛在长达一分钟的时间尺度上表现出明显的孔隙弹性行为。这些发现强调了间质流体运输在多细胞系统机制中的基本作用,并有助于确定发育和疾病的潜在物理调节因子,以及多细胞生命系统的工程策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Intercellular flow dominates the poroelasticity of multicellular tissues

Intercellular flow dominates the poroelasticity of multicellular tissues

The mechanical characteristics of cells and extracellular matrices—such as elasticity, surface tension and viscosity—can influence diseases such as fibrosis and tumour metastasis. Multicellular tissues have traditionally been modelled as viscoelastic materials, which overlooked the abundance of intercellular space and intercellular flow within the structure. Although intercellular flow can substantially impact development and disease progression, its role in the mechanical behaviour of tissues remains unclear. Here we show that fluid transport via the intercellular space determines the immediate mechanical response of tissues upon deformation. We directly measure the mechanical response of multicellular tissues by applying parallel plate compression via a tailored micro-mechanics platform. We find that both cultured three-dimensional cell spheroids and native mouse pancreatic islets exhibit apparent poroelastic behaviour over a timescale of up to a minute. These findings highlight the fundamental role of interstitial fluid transport in the mechanics of multicellular systems and could help identify potential physical regulators of development and diseases, as well as strategies for engineering multicellular living systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Physics
Nature Physics 物理-物理:综合
CiteScore
30.40
自引率
2.00%
发文量
349
审稿时长
4-8 weeks
期刊介绍: Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests. The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信