{"title":"超高效LiAlGa4O8: Cr3+, Ni2+近红外荧光粉,通过Cr3+-Ni2+能量转移,外发光量子产率超过70%。","authors":"Wendong Nie,Sisi Liang,Dejian Chen,Jie Hu,Zihao Wang,Zixin Pan,Hongyi Yang,Fulin Lin,Xiaodong Yi,Haomiao Zhu","doi":"10.1021/acsami.5c08213","DOIUrl":null,"url":null,"abstract":"Ni2+-doped inorganic crystals are promising for generating broadband emissions from 1000 to 1700 nm, which are crucial for advancing NIR light sources. However, their commercial applications have been hindered due to their weak absorption. Herein, the LiAl5O8 crystal is present as the host for Cr3+ and Ni2+ ions due to its high density of available doping sites (Al3+) per unit volume (0.048/Å3) for Cr3+ sensitizers. By heavily increasing the doping concentration of Cr3+, an unprecedented broad emission band peaking at 773 nm emerges, enhancing the spectral overlap between the emission of Cr3+ and absorption of Ni2+, thus boosting the energy transfer efficiency from Cr3+ to Ni2+. This accelerated energy transfer rate competes favorably against nonradiative processes, allowing higher concentrations of Cr3+ without any photoluminescence quenching. Moreover, by substituting Ga3+ for Al3+, the excitation peak is successfully tuned from 405 to 445 nm, aligning perfectly with commercial blue diode chips. As a result, the optimal LiAlGa4O8: 0.26Cr3+, 0.1Ni2+ phosphor exhibits a broadband emission ranging from 950 to 1600 nm, achieving internal/external photoluminescence quantum yields up to 94.12 and 72.62%, respectively. The application demonstration of packaged lighting devices shows its great potential in the fields of poultry farming and life science.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"4 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrahigh Efficiency LiAlGa4O8: Cr3+, Ni2+ Near-Infrared Phosphor with an External Photoluminescence Quantum Yield Exceeding 70% via Cr3+-Ni2+ Energy Transfer.\",\"authors\":\"Wendong Nie,Sisi Liang,Dejian Chen,Jie Hu,Zihao Wang,Zixin Pan,Hongyi Yang,Fulin Lin,Xiaodong Yi,Haomiao Zhu\",\"doi\":\"10.1021/acsami.5c08213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ni2+-doped inorganic crystals are promising for generating broadband emissions from 1000 to 1700 nm, which are crucial for advancing NIR light sources. However, their commercial applications have been hindered due to their weak absorption. Herein, the LiAl5O8 crystal is present as the host for Cr3+ and Ni2+ ions due to its high density of available doping sites (Al3+) per unit volume (0.048/Å3) for Cr3+ sensitizers. By heavily increasing the doping concentration of Cr3+, an unprecedented broad emission band peaking at 773 nm emerges, enhancing the spectral overlap between the emission of Cr3+ and absorption of Ni2+, thus boosting the energy transfer efficiency from Cr3+ to Ni2+. This accelerated energy transfer rate competes favorably against nonradiative processes, allowing higher concentrations of Cr3+ without any photoluminescence quenching. Moreover, by substituting Ga3+ for Al3+, the excitation peak is successfully tuned from 405 to 445 nm, aligning perfectly with commercial blue diode chips. As a result, the optimal LiAlGa4O8: 0.26Cr3+, 0.1Ni2+ phosphor exhibits a broadband emission ranging from 950 to 1600 nm, achieving internal/external photoluminescence quantum yields up to 94.12 and 72.62%, respectively. The application demonstration of packaged lighting devices shows its great potential in the fields of poultry farming and life science.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.5c08213\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c08213","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Ultrahigh Efficiency LiAlGa4O8: Cr3+, Ni2+ Near-Infrared Phosphor with an External Photoluminescence Quantum Yield Exceeding 70% via Cr3+-Ni2+ Energy Transfer.
Ni2+-doped inorganic crystals are promising for generating broadband emissions from 1000 to 1700 nm, which are crucial for advancing NIR light sources. However, their commercial applications have been hindered due to their weak absorption. Herein, the LiAl5O8 crystal is present as the host for Cr3+ and Ni2+ ions due to its high density of available doping sites (Al3+) per unit volume (0.048/Å3) for Cr3+ sensitizers. By heavily increasing the doping concentration of Cr3+, an unprecedented broad emission band peaking at 773 nm emerges, enhancing the spectral overlap between the emission of Cr3+ and absorption of Ni2+, thus boosting the energy transfer efficiency from Cr3+ to Ni2+. This accelerated energy transfer rate competes favorably against nonradiative processes, allowing higher concentrations of Cr3+ without any photoluminescence quenching. Moreover, by substituting Ga3+ for Al3+, the excitation peak is successfully tuned from 405 to 445 nm, aligning perfectly with commercial blue diode chips. As a result, the optimal LiAlGa4O8: 0.26Cr3+, 0.1Ni2+ phosphor exhibits a broadband emission ranging from 950 to 1600 nm, achieving internal/external photoluminescence quantum yields up to 94.12 and 72.62%, respectively. The application demonstration of packaged lighting devices shows its great potential in the fields of poultry farming and life science.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.