Antonio Maglione,Federico Olivieri,Roberto Avolio,Rachele Castaldo,Mariacristina Cocca,Maria Emanuela Errico,Veronica Ambrogi,Gennaro Gentile
{"title":"超交联纤维素纳米原纤维对水中芳香族污染物的自发和可逆吸附,作为化石基吸附剂的有效替代品。","authors":"Antonio Maglione,Federico Olivieri,Roberto Avolio,Rachele Castaldo,Mariacristina Cocca,Maria Emanuela Errico,Veronica Ambrogi,Gennaro Gentile","doi":"10.1021/acsami.5c05009","DOIUrl":null,"url":null,"abstract":"In this work, a novel high surface area adsorbent based on cellulose and inspired by hyper-cross-linked polymers was designed. Cellulose nanofibrils (CNF) were functionalized with poly(vinylbenzyl chloride) and hyper-cross-linked through Friedel-Crafts alkylation, yielding a micro/mesoporous material characterized by a specific surface area of 409 m2/g, microporous fraction of 50%, and biobased content of about 70 wt %. The functionalized CNF, tested for the adsorption of 2,4-dichlorophenol (DCP) from water at 298 K, were able to remove 90% of the pollutant from a 62.5 mg/L DCP solution and adsorb 284 mg/g at a higher concentration (1000 mg/L). Thermodynamic studies demonstrated the multilayer adsorption of the hyper-cross-linked CNF, the exothermic nature of the process, and its spontaneity. The hyper-cross-linked cellulose nanofibrils were reusable with efficiency above 98% in 5 subsequent cycles. The adsorption performance was stable across varying pH levels, and interference from natural organic matter (e.g., humic acids) was minimal (<10%). This work marked a promising step toward more sustainable sorbent materials by demonstrating the potential of cellulose nanofibrils as functional scaffolds. The strategy could be extended to waste-derived cellulose sources and biobased aromatic compounds, paving the way for fully renewable porous adsorbents.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"12 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hyper-Cross-linked Cellulose Nanofibrils with Spontaneous and Reversible Adsorption of Aromatic Pollutants from Water as a Valid Alternative to Fossil-Based Adsorbents.\",\"authors\":\"Antonio Maglione,Federico Olivieri,Roberto Avolio,Rachele Castaldo,Mariacristina Cocca,Maria Emanuela Errico,Veronica Ambrogi,Gennaro Gentile\",\"doi\":\"10.1021/acsami.5c05009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a novel high surface area adsorbent based on cellulose and inspired by hyper-cross-linked polymers was designed. Cellulose nanofibrils (CNF) were functionalized with poly(vinylbenzyl chloride) and hyper-cross-linked through Friedel-Crafts alkylation, yielding a micro/mesoporous material characterized by a specific surface area of 409 m2/g, microporous fraction of 50%, and biobased content of about 70 wt %. The functionalized CNF, tested for the adsorption of 2,4-dichlorophenol (DCP) from water at 298 K, were able to remove 90% of the pollutant from a 62.5 mg/L DCP solution and adsorb 284 mg/g at a higher concentration (1000 mg/L). Thermodynamic studies demonstrated the multilayer adsorption of the hyper-cross-linked CNF, the exothermic nature of the process, and its spontaneity. The hyper-cross-linked cellulose nanofibrils were reusable with efficiency above 98% in 5 subsequent cycles. The adsorption performance was stable across varying pH levels, and interference from natural organic matter (e.g., humic acids) was minimal (<10%). This work marked a promising step toward more sustainable sorbent materials by demonstrating the potential of cellulose nanofibrils as functional scaffolds. The strategy could be extended to waste-derived cellulose sources and biobased aromatic compounds, paving the way for fully renewable porous adsorbents.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.5c05009\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c05009","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Hyper-Cross-linked Cellulose Nanofibrils with Spontaneous and Reversible Adsorption of Aromatic Pollutants from Water as a Valid Alternative to Fossil-Based Adsorbents.
In this work, a novel high surface area adsorbent based on cellulose and inspired by hyper-cross-linked polymers was designed. Cellulose nanofibrils (CNF) were functionalized with poly(vinylbenzyl chloride) and hyper-cross-linked through Friedel-Crafts alkylation, yielding a micro/mesoporous material characterized by a specific surface area of 409 m2/g, microporous fraction of 50%, and biobased content of about 70 wt %. The functionalized CNF, tested for the adsorption of 2,4-dichlorophenol (DCP) from water at 298 K, were able to remove 90% of the pollutant from a 62.5 mg/L DCP solution and adsorb 284 mg/g at a higher concentration (1000 mg/L). Thermodynamic studies demonstrated the multilayer adsorption of the hyper-cross-linked CNF, the exothermic nature of the process, and its spontaneity. The hyper-cross-linked cellulose nanofibrils were reusable with efficiency above 98% in 5 subsequent cycles. The adsorption performance was stable across varying pH levels, and interference from natural organic matter (e.g., humic acids) was minimal (<10%). This work marked a promising step toward more sustainable sorbent materials by demonstrating the potential of cellulose nanofibrils as functional scaffolds. The strategy could be extended to waste-derived cellulose sources and biobased aromatic compounds, paving the way for fully renewable porous adsorbents.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.