利用上转换纳米颗粒在近红外光触发下原位构建用于肿瘤治疗的三维“渔网”聚合物网络。

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-06-19 DOI:10.1021/acsnano.5c06480
Mingjie Jia, Yishuo Sun, Weiwei Jiang, Qingqing Wang, Xuexue Huang, Gangqiang Wang, Hongwei Wu*, Peng Wei* and Tao Yi*, 
{"title":"利用上转换纳米颗粒在近红外光触发下原位构建用于肿瘤治疗的三维“渔网”聚合物网络。","authors":"Mingjie Jia,&nbsp;Yishuo Sun,&nbsp;Weiwei Jiang,&nbsp;Qingqing Wang,&nbsp;Xuexue Huang,&nbsp;Gangqiang Wang,&nbsp;Hongwei Wu*,&nbsp;Peng Wei* and Tao Yi*,&nbsp;","doi":"10.1021/acsnano.5c06480","DOIUrl":null,"url":null,"abstract":"<p ><i>In situ</i> construction of three-dimensional (3D) polymer networks for tumor cell capture, localization, and killing provides a different option for precision tumor therapy. Current approaches, however, face limitations due to insufficient and heterogeneous endogenous polymerization stimuli and the phototoxicity and limited tissue penetration of ultraviolet (UV)/visible light-triggered exogenous polymerization, constraining effective <i>in vivo</i> network assembly. We present a near-infrared (NIR) light-driven strategy utilizing the upconversion properties of thulium-doped core–shell nanoparticles (UCNPs) to enable precise, localized <i>in situ</i> polymerization within tumor cells. The UCNPs convert NIR (980 nm) light with better penetration depth to UV wavelengths (345 and 360 nm), activating photoinitiated radical polymerization. Hence, enhancing the emission of UCNPs in the UV region is crucial for UV-induced <i>in situ</i> polymerization. Herein, by systematically elucidating the core–shell growth process, DHU-UCNPs-1 carrying polymerized components is elaborated, and their emission intensities at 345 and 360 nm are enhanced by 113.7-fold and 84.8-fold compared to the luminescent core, respectively. The nanoplatform forms an inorganic-polymer hybridized 3D fibrous network upon <i>in situ</i> polymerization. Of note, this “fishing net” polymer network disrupts actin dynamics, impedes cell migration, and compromises mitochondrial function, collectively suppressing tumor growth and metastasis. Featuring NIR-triggered control, deep-tissue accessibility, and broad monomer compatibility, this platform provides a promising paradigm for <i>in situ</i> 3D polymer network assembly, advancing the applications of UCNPs in tumor therapy and beyond.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 25","pages":"23379–23392"},"PeriodicalIF":16.0000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Near-Infrared Light-Triggered In Situ Construction of 3D “Fishing Net” Polymer Networks Using Upconversion Nanoparticles for Tumor Therapy\",\"authors\":\"Mingjie Jia,&nbsp;Yishuo Sun,&nbsp;Weiwei Jiang,&nbsp;Qingqing Wang,&nbsp;Xuexue Huang,&nbsp;Gangqiang Wang,&nbsp;Hongwei Wu*,&nbsp;Peng Wei* and Tao Yi*,&nbsp;\",\"doi\":\"10.1021/acsnano.5c06480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p ><i>In situ</i> construction of three-dimensional (3D) polymer networks for tumor cell capture, localization, and killing provides a different option for precision tumor therapy. Current approaches, however, face limitations due to insufficient and heterogeneous endogenous polymerization stimuli and the phototoxicity and limited tissue penetration of ultraviolet (UV)/visible light-triggered exogenous polymerization, constraining effective <i>in vivo</i> network assembly. We present a near-infrared (NIR) light-driven strategy utilizing the upconversion properties of thulium-doped core–shell nanoparticles (UCNPs) to enable precise, localized <i>in situ</i> polymerization within tumor cells. The UCNPs convert NIR (980 nm) light with better penetration depth to UV wavelengths (345 and 360 nm), activating photoinitiated radical polymerization. Hence, enhancing the emission of UCNPs in the UV region is crucial for UV-induced <i>in situ</i> polymerization. Herein, by systematically elucidating the core–shell growth process, DHU-UCNPs-1 carrying polymerized components is elaborated, and their emission intensities at 345 and 360 nm are enhanced by 113.7-fold and 84.8-fold compared to the luminescent core, respectively. The nanoplatform forms an inorganic-polymer hybridized 3D fibrous network upon <i>in situ</i> polymerization. Of note, this “fishing net” polymer network disrupts actin dynamics, impedes cell migration, and compromises mitochondrial function, collectively suppressing tumor growth and metastasis. Featuring NIR-triggered control, deep-tissue accessibility, and broad monomer compatibility, this platform provides a promising paradigm for <i>in situ</i> 3D polymer network assembly, advancing the applications of UCNPs in tumor therapy and beyond.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 25\",\"pages\":\"23379–23392\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.5c06480\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c06480","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

原位构建用于肿瘤细胞捕获、定位和杀伤的三维(3D)聚合物网络为精确肿瘤治疗提供了不同的选择。然而,由于内源聚合刺激不足和不均匀,以及紫外线/可见光引发的外源聚合的光毒性和有限的组织渗透,目前的方法面临局限性,限制了有效的体内网络组装。我们提出了一种近红外(NIR)光驱动策略,利用掺铥核壳纳米颗粒(UCNPs)的上转换特性,在肿瘤细胞内实现精确的、局部的原位聚合。UCNPs将穿透深度较好的近红外光(980 nm)转化为紫外波长(345和360 nm),激活光引发自由基聚合。因此,增强UCNPs在UV区的发射对于UV诱导的原位聚合是至关重要的。本文通过系统地阐明核-壳生长过程,阐述了携带聚合组分的DHU-UCNPs-1在345 nm和360 nm处的发射强度分别比发光核增强了113.7倍和84.8倍。纳米平台通过原位聚合形成无机聚合物杂化三维纤维网络。值得注意的是,这种“渔网”聚合物网络破坏了肌动蛋白动力学,阻碍了细胞迁移,损害了线粒体功能,共同抑制了肿瘤的生长和转移。该平台具有nir触发控制,深层组织可及性和广泛的单体兼容性,为原位3D聚合物网络组装提供了一个有前途的范例,推进了UCNPs在肿瘤治疗等领域的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Near-Infrared Light-Triggered In Situ Construction of 3D “Fishing Net” Polymer Networks Using Upconversion Nanoparticles for Tumor Therapy

Near-Infrared Light-Triggered In Situ Construction of 3D “Fishing Net” Polymer Networks Using Upconversion Nanoparticles for Tumor Therapy

In situ construction of three-dimensional (3D) polymer networks for tumor cell capture, localization, and killing provides a different option for precision tumor therapy. Current approaches, however, face limitations due to insufficient and heterogeneous endogenous polymerization stimuli and the phototoxicity and limited tissue penetration of ultraviolet (UV)/visible light-triggered exogenous polymerization, constraining effective in vivo network assembly. We present a near-infrared (NIR) light-driven strategy utilizing the upconversion properties of thulium-doped core–shell nanoparticles (UCNPs) to enable precise, localized in situ polymerization within tumor cells. The UCNPs convert NIR (980 nm) light with better penetration depth to UV wavelengths (345 and 360 nm), activating photoinitiated radical polymerization. Hence, enhancing the emission of UCNPs in the UV region is crucial for UV-induced in situ polymerization. Herein, by systematically elucidating the core–shell growth process, DHU-UCNPs-1 carrying polymerized components is elaborated, and their emission intensities at 345 and 360 nm are enhanced by 113.7-fold and 84.8-fold compared to the luminescent core, respectively. The nanoplatform forms an inorganic-polymer hybridized 3D fibrous network upon in situ polymerization. Of note, this “fishing net” polymer network disrupts actin dynamics, impedes cell migration, and compromises mitochondrial function, collectively suppressing tumor growth and metastasis. Featuring NIR-triggered control, deep-tissue accessibility, and broad monomer compatibility, this platform provides a promising paradigm for in situ 3D polymer network assembly, advancing the applications of UCNPs in tumor therapy and beyond.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信