利用深度学习精确地从头设计高亲和力的蛋白质结合大环

IF 12.9 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Stephen A. Rettie, David Juergens, Victor Adebomi, Yensi Flores Bueso, Qinqin Zhao, Alexandria N. Leveille, Andi Liu, Asim K. Bera, Joana A. Wilms, Alina Üffing, Alex Kang, Evans Brackenbrough, Mila Lamb, Stacey R. Gerben, Analisa Murray, Paul M. Levine, Maika Schneider, Vibha Vasireddy, Sergey Ovchinnikov, Oliver H. Weiergräber, Dieter Willbold, Joshua A. Kritzer, Joseph D. Mougous, David Baker, Frank DiMaio, Gaurav Bhardwaj
{"title":"利用深度学习精确地从头设计高亲和力的蛋白质结合大环","authors":"Stephen A. Rettie, David Juergens, Victor Adebomi, Yensi Flores Bueso, Qinqin Zhao, Alexandria N. Leveille, Andi Liu, Asim K. Bera, Joana A. Wilms, Alina Üffing, Alex Kang, Evans Brackenbrough, Mila Lamb, Stacey R. Gerben, Analisa Murray, Paul M. Levine, Maika Schneider, Vibha Vasireddy, Sergey Ovchinnikov, Oliver H. Weiergräber, Dieter Willbold, Joshua A. Kritzer, Joseph D. Mougous, David Baker, Frank DiMaio, Gaurav Bhardwaj","doi":"10.1038/s41589-025-01929-w","DOIUrl":null,"url":null,"abstract":"<p>Developing macrocyclic binders to therapeutic proteins typically relies on large-scale screening methods that are resource intensive and provide little control over binding mode. Despite progress in protein design, there are currently no robust approaches for de novo design of protein-binding macrocycles. Here we introduce RFpeptides, a denoising diffusion-based pipeline for designing macrocyclic binders against protein targets of interest. We tested 20 or fewer designed macrocycles against each of four diverse proteins and obtained binders with medium to high affinity against all targets. For one of the targets, Rhombotarget A (RbtA), we designed a high-affinity binder (<i>K</i><sub>d</sub> &lt; 10 nM) despite starting from the predicted target structure. X-ray structures for macrocycle-bound myeloid cell leukemia 1, γ-aminobutyric acid type A receptor-associated protein and RbtA complexes match closely with the computational models, with a Cα root-mean-square deviation &lt; 1.5 Å to the design models. RFpeptides provides a framework for rapid and custom design of macrocyclic peptides for diagnostic and therapeutic applications.</p><figure></figure>","PeriodicalId":18832,"journal":{"name":"Nature chemical biology","volume":"240 1","pages":""},"PeriodicalIF":12.9000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accurate de novo design of high-affinity protein-binding macrocycles using deep learning\",\"authors\":\"Stephen A. Rettie, David Juergens, Victor Adebomi, Yensi Flores Bueso, Qinqin Zhao, Alexandria N. Leveille, Andi Liu, Asim K. Bera, Joana A. Wilms, Alina Üffing, Alex Kang, Evans Brackenbrough, Mila Lamb, Stacey R. Gerben, Analisa Murray, Paul M. Levine, Maika Schneider, Vibha Vasireddy, Sergey Ovchinnikov, Oliver H. Weiergräber, Dieter Willbold, Joshua A. Kritzer, Joseph D. Mougous, David Baker, Frank DiMaio, Gaurav Bhardwaj\",\"doi\":\"10.1038/s41589-025-01929-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Developing macrocyclic binders to therapeutic proteins typically relies on large-scale screening methods that are resource intensive and provide little control over binding mode. Despite progress in protein design, there are currently no robust approaches for de novo design of protein-binding macrocycles. Here we introduce RFpeptides, a denoising diffusion-based pipeline for designing macrocyclic binders against protein targets of interest. We tested 20 or fewer designed macrocycles against each of four diverse proteins and obtained binders with medium to high affinity against all targets. For one of the targets, Rhombotarget A (RbtA), we designed a high-affinity binder (<i>K</i><sub>d</sub> &lt; 10 nM) despite starting from the predicted target structure. X-ray structures for macrocycle-bound myeloid cell leukemia 1, γ-aminobutyric acid type A receptor-associated protein and RbtA complexes match closely with the computational models, with a Cα root-mean-square deviation &lt; 1.5 Å to the design models. RFpeptides provides a framework for rapid and custom design of macrocyclic peptides for diagnostic and therapeutic applications.</p><figure></figure>\",\"PeriodicalId\":18832,\"journal\":{\"name\":\"Nature chemical biology\",\"volume\":\"240 1\",\"pages\":\"\"},\"PeriodicalIF\":12.9000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature chemical biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41589-025-01929-w\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41589-025-01929-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

开发治疗性蛋白的大环结合物通常依赖于资源密集型的大规模筛选方法,并且对结合模式几乎没有控制。尽管在蛋白质设计方面取得了进展,但目前还没有可靠的方法来重新设计蛋白质结合大环。在这里,我们介绍RFpeptides,一种基于扩散的去噪管道,用于设计针对感兴趣的蛋白质靶点的大环结合物。我们针对四种不同的蛋白质分别测试了20个或更少的设计大环,并获得了对所有靶标具有中等至高亲和力的结合物。对于其中一个靶标Rhombotarget A (RbtA),尽管从预测的靶标结构开始,我们还是设计了一个高亲和力的结合物(Kd < 10 nM)。大环结合的髓细胞白血病1、γ-氨基丁酸A型受体相关蛋白和RbtA复合物的x射线结构与计算模型非常吻合,与设计模型的Cα均方根偏差<; 1.5 Å。RFpeptides为诊断和治疗应用的大环肽的快速和定制设计提供了一个框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Accurate de novo design of high-affinity protein-binding macrocycles using deep learning

Accurate de novo design of high-affinity protein-binding macrocycles using deep learning

Developing macrocyclic binders to therapeutic proteins typically relies on large-scale screening methods that are resource intensive and provide little control over binding mode. Despite progress in protein design, there are currently no robust approaches for de novo design of protein-binding macrocycles. Here we introduce RFpeptides, a denoising diffusion-based pipeline for designing macrocyclic binders against protein targets of interest. We tested 20 or fewer designed macrocycles against each of four diverse proteins and obtained binders with medium to high affinity against all targets. For one of the targets, Rhombotarget A (RbtA), we designed a high-affinity binder (Kd < 10 nM) despite starting from the predicted target structure. X-ray structures for macrocycle-bound myeloid cell leukemia 1, γ-aminobutyric acid type A receptor-associated protein and RbtA complexes match closely with the computational models, with a Cα root-mean-square deviation < 1.5 Å to the design models. RFpeptides provides a framework for rapid and custom design of macrocyclic peptides for diagnostic and therapeutic applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature chemical biology
Nature chemical biology 生物-生化与分子生物学
CiteScore
23.90
自引率
1.40%
发文量
238
审稿时长
12 months
期刊介绍: Nature Chemical Biology stands as an esteemed international monthly journal, offering a prominent platform for the chemical biology community to showcase top-tier original research and commentary. Operating at the crossroads of chemistry, biology, and related disciplines, chemical biology utilizes scientific ideas and approaches to comprehend and manipulate biological systems with molecular precision. The journal embraces contributions from the growing community of chemical biologists, encompassing insights from chemists applying principles and tools to biological inquiries and biologists striving to comprehend and control molecular-level biological processes. We prioritize studies unveiling significant conceptual or practical advancements in areas where chemistry and biology intersect, emphasizing basic research, especially those reporting novel chemical or biological tools and offering profound molecular-level insights into underlying biological mechanisms. Nature Chemical Biology also welcomes manuscripts describing applied molecular studies at the chemistry-biology interface due to the broad utility of chemical biology approaches in manipulating or engineering biological systems. Irrespective of scientific focus, we actively seek submissions that creatively blend chemistry and biology, particularly those providing substantial conceptual or methodological breakthroughs with the potential to open innovative research avenues. The journal maintains a robust and impartial review process, emphasizing thorough chemical and biological characterization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信