一种用于破译细胞动力学和复杂疾病的计算机药物发现的深度生成模型

IF 26.8 1区 医学 Q1 ENGINEERING, BIOMEDICAL
Yumin Zheng, Jonas C. Schupp, Taylor Adams, Geremy Clair, Aurelien Justet, Farida Ahangari, Xiting Yan, Paul Hansen, Marianne Carlon, Emanuela Cortesi, Marie Vermant, Robin Vos, Laurens J. De Sadeleer, Ivan O. Rosas, Ricardo Pineda, John Sembrat, Melanie Königshoff, John E. McDonough, Bart M. Vanaudenaerde, Wim A. Wuyts, Naftali Kaminski, Jun Ding
{"title":"一种用于破译细胞动力学和复杂疾病的计算机药物发现的深度生成模型","authors":"Yumin Zheng, Jonas C. Schupp, Taylor Adams, Geremy Clair, Aurelien Justet, Farida Ahangari, Xiting Yan, Paul Hansen, Marianne Carlon, Emanuela Cortesi, Marie Vermant, Robin Vos, Laurens J. De Sadeleer, Ivan O. Rosas, Ricardo Pineda, John Sembrat, Melanie Königshoff, John E. McDonough, Bart M. Vanaudenaerde, Wim A. Wuyts, Naftali Kaminski, Jun Ding","doi":"10.1038/s41551-025-01423-7","DOIUrl":null,"url":null,"abstract":"<p>Human diseases are characterized by intricate cellular dynamics. Single-cell transcriptomics provides critical insights, yet a persistent gap remains in computational tools for detailed disease progression analysis and targeted in silico drug interventions. Here we introduce UNAGI, a deep generative neural network tailored to analyse time-series single-cell transcriptomic data. This tool captures the complex cellular dynamics underlying disease progression, enhancing drug perturbation modelling and screening. When applied to a dataset from patients with idiopathic pulmonary fibrosis, UNAGI learns disease-informed cell embeddings that sharpen our understanding of disease progression, leading to the identification of potential therapeutic drug candidates. Validation using proteomics reveals the accuracy of UNAGI’s cellular dynamics analysis, and the use of the fibrotic cocktail-treated human precision-cut lung slices confirms UNAGI’s predictions that nifedipine, an antihypertensive drug, may have anti-fibrotic effects on human tissues. UNAGI’s versatility extends to other diseases, including COVID, demonstrating adaptability and confirming its broader applicability in decoding complex cellular dynamics beyond idiopathic pulmonary fibrosis, amplifying its use in the quest for therapeutic solutions across diverse pathological landscapes.</p>","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"240 1","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A deep generative model for deciphering cellular dynamics and in silico drug discovery in complex diseases\",\"authors\":\"Yumin Zheng, Jonas C. Schupp, Taylor Adams, Geremy Clair, Aurelien Justet, Farida Ahangari, Xiting Yan, Paul Hansen, Marianne Carlon, Emanuela Cortesi, Marie Vermant, Robin Vos, Laurens J. De Sadeleer, Ivan O. Rosas, Ricardo Pineda, John Sembrat, Melanie Königshoff, John E. McDonough, Bart M. Vanaudenaerde, Wim A. Wuyts, Naftali Kaminski, Jun Ding\",\"doi\":\"10.1038/s41551-025-01423-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Human diseases are characterized by intricate cellular dynamics. Single-cell transcriptomics provides critical insights, yet a persistent gap remains in computational tools for detailed disease progression analysis and targeted in silico drug interventions. Here we introduce UNAGI, a deep generative neural network tailored to analyse time-series single-cell transcriptomic data. This tool captures the complex cellular dynamics underlying disease progression, enhancing drug perturbation modelling and screening. When applied to a dataset from patients with idiopathic pulmonary fibrosis, UNAGI learns disease-informed cell embeddings that sharpen our understanding of disease progression, leading to the identification of potential therapeutic drug candidates. Validation using proteomics reveals the accuracy of UNAGI’s cellular dynamics analysis, and the use of the fibrotic cocktail-treated human precision-cut lung slices confirms UNAGI’s predictions that nifedipine, an antihypertensive drug, may have anti-fibrotic effects on human tissues. UNAGI’s versatility extends to other diseases, including COVID, demonstrating adaptability and confirming its broader applicability in decoding complex cellular dynamics beyond idiopathic pulmonary fibrosis, amplifying its use in the quest for therapeutic solutions across diverse pathological landscapes.</p>\",\"PeriodicalId\":19063,\"journal\":{\"name\":\"Nature Biomedical Engineering\",\"volume\":\"240 1\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41551-025-01423-7\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41551-025-01423-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

人类疾病的特点是复杂的细胞动力学。单细胞转录组学提供了关键的见解,但在详细的疾病进展分析和针对性的计算机药物干预的计算工具方面仍然存在持续的差距。在这里,我们介绍了UNAGI,一种深度生成神经网络,专门用于分析时间序列单细胞转录组数据。该工具捕获复杂的细胞动力学潜在的疾病进展,加强药物扰动建模和筛选。当应用于特发性肺纤维化患者的数据集时,UNAGI可以学习疾病信息细胞嵌入,从而提高我们对疾病进展的理解,从而识别潜在的治疗候选药物。使用蛋白质组学验证揭示了UNAGI细胞动力学分析的准确性,使用鸡尾酒处理的纤维化人体精确切割肺切片证实了UNAGI的预测,即硝苯地平(一种降压药)可能对人体组织具有抗纤维化作用。UNAGI的多功能性扩展到包括COVID在内的其他疾病,展示了适应性,并证实了其在解码特发性肺纤维化以外的复杂细胞动力学方面的更广泛适用性,扩大了其在寻求不同病理景观的治疗解决方案中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A deep generative model for deciphering cellular dynamics and in silico drug discovery in complex diseases

A deep generative model for deciphering cellular dynamics and in silico drug discovery in complex diseases

Human diseases are characterized by intricate cellular dynamics. Single-cell transcriptomics provides critical insights, yet a persistent gap remains in computational tools for detailed disease progression analysis and targeted in silico drug interventions. Here we introduce UNAGI, a deep generative neural network tailored to analyse time-series single-cell transcriptomic data. This tool captures the complex cellular dynamics underlying disease progression, enhancing drug perturbation modelling and screening. When applied to a dataset from patients with idiopathic pulmonary fibrosis, UNAGI learns disease-informed cell embeddings that sharpen our understanding of disease progression, leading to the identification of potential therapeutic drug candidates. Validation using proteomics reveals the accuracy of UNAGI’s cellular dynamics analysis, and the use of the fibrotic cocktail-treated human precision-cut lung slices confirms UNAGI’s predictions that nifedipine, an antihypertensive drug, may have anti-fibrotic effects on human tissues. UNAGI’s versatility extends to other diseases, including COVID, demonstrating adaptability and confirming its broader applicability in decoding complex cellular dynamics beyond idiopathic pulmonary fibrosis, amplifying its use in the quest for therapeutic solutions across diverse pathological landscapes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Biomedical Engineering
Nature Biomedical Engineering Medicine-Medicine (miscellaneous)
CiteScore
45.30
自引率
1.10%
发文量
138
期刊介绍: Nature Biomedical Engineering is an online-only monthly journal that was launched in January 2017. It aims to publish original research, reviews, and commentary focusing on applied biomedicine and health technology. The journal targets a diverse audience, including life scientists who are involved in developing experimental or computational systems and methods to enhance our understanding of human physiology. It also covers biomedical researchers and engineers who are engaged in designing or optimizing therapies, assays, devices, or procedures for diagnosing or treating diseases. Additionally, clinicians, who make use of research outputs to evaluate patient health or administer therapy in various clinical settings and healthcare contexts, are also part of the target audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信