超声触发ros响应共轭聚合物纳米颗粒释放喜树碱在乳腺癌联合治疗中的作用。

Yipiao Zhang, Tian Tian, Zhaokui Zeng, Chuanpin Chen, Rongrong Wang, Suhong Chen, Hongliang Zheng
{"title":"超声触发ros响应共轭聚合物纳米颗粒释放喜树碱在乳腺癌联合治疗中的作用。","authors":"Yipiao Zhang, Tian Tian, Zhaokui Zeng, Chuanpin Chen, Rongrong Wang, Suhong Chen, Hongliang Zheng","doi":"10.1039/d5tb00674k","DOIUrl":null,"url":null,"abstract":"<p><p>The treatment of breast cancer (BC) remains a major challenge. Although chemotherapy is currently the most common treatment, it is limited by high side effects. Responsive drug delivery systems (DDS) enable the controlled release of drugs, which can decrease the side effects of chemotherapy and improve efficacy. However, achieving precise delivery and targeted release of drugs is a major challenge. Here, we present ultrasound-triggered reactive oxygen species (ROS)-responsive conjugated polymer nanoparticles for combination therapy of BC. The conjugated polymer nanoparticles are candidates for the development of potential acoustic sensitizers due to their structural properties with good stability and biocompatible acoustic activation properties. In this study, sono-sensitive polymer nanoparticles (SPN) were used for spatiotemporally controlled sonodynamic therapy (SDT) and ROS-responsive chemotherapy. It was demonstrated that the SPN possessed potent acoustic-dynamic properties and could be activated by ultrasound to generate high levels of ROS, which cleaved ROS-responsive junctions, thereby facilitating the release of camptothecin. Furthermore, the SPN exhibited good long circulation properties and biocompatibility <i>in vivo</i>. The SPN combined with ultrasound treatment showed significant therapeutic effects in both BC cell lines and hormonal mouse models, with tumor suppression rates as high as 76.98 ± 9.09%, and no cardiotoxicity or other side effects were observed. Therefore, the present study provides a feasible strategy for designing novel controlled-release drug systems to improve the therapeutic efficacy of BC.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ROS-responsive conjugated polymer nanoparticles triggered by ultrasound for camptothecin release in breast cancer combination therapy.\",\"authors\":\"Yipiao Zhang, Tian Tian, Zhaokui Zeng, Chuanpin Chen, Rongrong Wang, Suhong Chen, Hongliang Zheng\",\"doi\":\"10.1039/d5tb00674k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The treatment of breast cancer (BC) remains a major challenge. Although chemotherapy is currently the most common treatment, it is limited by high side effects. Responsive drug delivery systems (DDS) enable the controlled release of drugs, which can decrease the side effects of chemotherapy and improve efficacy. However, achieving precise delivery and targeted release of drugs is a major challenge. Here, we present ultrasound-triggered reactive oxygen species (ROS)-responsive conjugated polymer nanoparticles for combination therapy of BC. The conjugated polymer nanoparticles are candidates for the development of potential acoustic sensitizers due to their structural properties with good stability and biocompatible acoustic activation properties. In this study, sono-sensitive polymer nanoparticles (SPN) were used for spatiotemporally controlled sonodynamic therapy (SDT) and ROS-responsive chemotherapy. It was demonstrated that the SPN possessed potent acoustic-dynamic properties and could be activated by ultrasound to generate high levels of ROS, which cleaved ROS-responsive junctions, thereby facilitating the release of camptothecin. Furthermore, the SPN exhibited good long circulation properties and biocompatibility <i>in vivo</i>. The SPN combined with ultrasound treatment showed significant therapeutic effects in both BC cell lines and hormonal mouse models, with tumor suppression rates as high as 76.98 ± 9.09%, and no cardiotoxicity or other side effects were observed. Therefore, the present study provides a feasible strategy for designing novel controlled-release drug systems to improve the therapeutic efficacy of BC.</p>\",\"PeriodicalId\":94089,\"journal\":{\"name\":\"Journal of materials chemistry. B\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of materials chemistry. B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1039/d5tb00674k\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of materials chemistry. B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d5tb00674k","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

乳腺癌(BC)的治疗仍然是一个重大挑战。虽然化疗是目前最常见的治疗方法,但它的副作用很大。反应性药物传递系统(Responsive drug delivery systems, DDS)能够控制药物的释放,从而减少化疗的副作用,提高疗效。然而,实现药物的精确递送和靶向释放是一项重大挑战。在这里,我们提出了超声触发活性氧(ROS)反应的共轭聚合物纳米颗粒用于联合治疗BC。共轭聚合物纳米颗粒具有良好的结构稳定性和生物相容性,是开发潜在声增敏剂的候选材料。在这项研究中,声敏感聚合物纳米颗粒(SPN)被用于时空控制声动力治疗(SDT)和ros反应化疗。研究表明,SPN具有强大的声动力特性,可以通过超声波激活产生高水平的ROS,从而劈开ROS响应连接,从而促进喜树碱的释放。此外,SPN具有良好的长循环性能和体内生物相容性。SPN联合超声治疗在BC细胞系和激素小鼠模型中均显示出显著的治疗效果,肿瘤抑制率高达76.98±9.09%,未见心脏毒性及其他副作用。因此,本研究为设计新型控释药物系统以提高BC的治疗效果提供了可行的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ROS-responsive conjugated polymer nanoparticles triggered by ultrasound for camptothecin release in breast cancer combination therapy.

The treatment of breast cancer (BC) remains a major challenge. Although chemotherapy is currently the most common treatment, it is limited by high side effects. Responsive drug delivery systems (DDS) enable the controlled release of drugs, which can decrease the side effects of chemotherapy and improve efficacy. However, achieving precise delivery and targeted release of drugs is a major challenge. Here, we present ultrasound-triggered reactive oxygen species (ROS)-responsive conjugated polymer nanoparticles for combination therapy of BC. The conjugated polymer nanoparticles are candidates for the development of potential acoustic sensitizers due to their structural properties with good stability and biocompatible acoustic activation properties. In this study, sono-sensitive polymer nanoparticles (SPN) were used for spatiotemporally controlled sonodynamic therapy (SDT) and ROS-responsive chemotherapy. It was demonstrated that the SPN possessed potent acoustic-dynamic properties and could be activated by ultrasound to generate high levels of ROS, which cleaved ROS-responsive junctions, thereby facilitating the release of camptothecin. Furthermore, the SPN exhibited good long circulation properties and biocompatibility in vivo. The SPN combined with ultrasound treatment showed significant therapeutic effects in both BC cell lines and hormonal mouse models, with tumor suppression rates as high as 76.98 ± 9.09%, and no cardiotoxicity or other side effects were observed. Therefore, the present study provides a feasible strategy for designing novel controlled-release drug systems to improve the therapeutic efficacy of BC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of materials chemistry. B
Journal of materials chemistry. B 化学科学, 工程与材料, 生命科学, 分析化学, 高分子组装与超分子结构, 高分子科学, 免疫生物学, 免疫学, 生化分析及生物传感, 组织工程学, 生物力学与组织工程学, 资源循环科学, 冶金与矿业, 生物医用高分子材料, 有机高分子材料, 金属材料的制备科学与跨学科应用基础, 金属材料, 样品前处理方法与技术, 有机分子功能材料化学, 有机化学
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信