人工智能提高了超低场MRI和3T MRI测量的区域脑体积的一致性。

Frontiers in neuroimaging Pub Date : 2025-06-04 eCollection Date: 2025-01-01 DOI:10.3389/fnimg.2025.1588487
Kh Tohidul Islam, Shenjun Zhong, Parisa Zakavi, Helen Kavnoudias, Shawna Farquharson, Gail Durbridge, Markus Barth, Andrew Dwyer, Katie L McMahon, Paul M Parizel, Richard McIntyre, Gary F Egan, Meng Law, Zhaolin Chen
{"title":"人工智能提高了超低场MRI和3T MRI测量的区域脑体积的一致性。","authors":"Kh Tohidul Islam, Shenjun Zhong, Parisa Zakavi, Helen Kavnoudias, Shawna Farquharson, Gail Durbridge, Markus Barth, Andrew Dwyer, Katie L McMahon, Paul M Parizel, Richard McIntyre, Gary F Egan, Meng Law, Zhaolin Chen","doi":"10.3389/fnimg.2025.1588487","DOIUrl":null,"url":null,"abstract":"<p><p>This study compares volumetric measurements of various brain regions using different magnetic resonance imaging (MRI) modalities and deep learning models, specifically 3T MRI, ultra-low field (ULF) MRI at 64mT, and AI-enhanced ULF MRI using SynthSR and HiLoResGAN. The aim is to evaluate the alignment and agreement among field strengths and ULF MRI with and without AI. Descriptive statistics, paired <i>t</i>-tests, effect size analyses, and regression analyses are employed to assess the relationships and differences between modalities. The results indicate that volumetric measurements derived from 64mT MRI deviate significantly from those obtained using 3T MRI. By leveraging SynthSR and LoHiResGAN models, these deviations are reduced, bringing the volumetric estimates closer to those obtained from 3T MRI, which serves as the reference standard for brain volume quantification. These findings highlight that deep learning models can reduce systematic differences in brain volume measurements across field strengths, providing potential solutions to minimize bias in imaging studies.</p>","PeriodicalId":73094,"journal":{"name":"Frontiers in neuroimaging","volume":"4 ","pages":"1588487"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12174951/pdf/","citationCount":"0","resultStr":"{\"title\":\"AI improves consistency in regional brain volumes measured in ultra-low-field MRI and 3T MRI.\",\"authors\":\"Kh Tohidul Islam, Shenjun Zhong, Parisa Zakavi, Helen Kavnoudias, Shawna Farquharson, Gail Durbridge, Markus Barth, Andrew Dwyer, Katie L McMahon, Paul M Parizel, Richard McIntyre, Gary F Egan, Meng Law, Zhaolin Chen\",\"doi\":\"10.3389/fnimg.2025.1588487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study compares volumetric measurements of various brain regions using different magnetic resonance imaging (MRI) modalities and deep learning models, specifically 3T MRI, ultra-low field (ULF) MRI at 64mT, and AI-enhanced ULF MRI using SynthSR and HiLoResGAN. The aim is to evaluate the alignment and agreement among field strengths and ULF MRI with and without AI. Descriptive statistics, paired <i>t</i>-tests, effect size analyses, and regression analyses are employed to assess the relationships and differences between modalities. The results indicate that volumetric measurements derived from 64mT MRI deviate significantly from those obtained using 3T MRI. By leveraging SynthSR and LoHiResGAN models, these deviations are reduced, bringing the volumetric estimates closer to those obtained from 3T MRI, which serves as the reference standard for brain volume quantification. These findings highlight that deep learning models can reduce systematic differences in brain volume measurements across field strengths, providing potential solutions to minimize bias in imaging studies.</p>\",\"PeriodicalId\":73094,\"journal\":{\"name\":\"Frontiers in neuroimaging\",\"volume\":\"4 \",\"pages\":\"1588487\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12174951/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in neuroimaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fnimg.2025.1588487\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in neuroimaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fnimg.2025.1588487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究比较了使用不同磁共振成像(MRI)模式和深度学习模型的不同脑区域的体积测量,特别是3T MRI, 64mT的超低场(ULF) MRI,以及使用SynthSR和HiLoResGAN的人工智能增强ULF MRI。目的是评估在有人工智能和没有人工智能的情况下,场强和ULF MRI之间的对齐和一致性。采用描述性统计、配对t检验、效应量分析和回归分析来评估模式之间的关系和差异。结果表明,64mT MRI的体积测量结果与3T MRI的测量结果存在显著差异。通过利用SynthSR和LoHiResGAN模型,减少了这些偏差,使体积估计值更接近3T MRI获得的结果,3T MRI作为脑体积量化的参考标准。这些发现强调了深度学习模型可以减少不同场强脑容量测量的系统差异,为减少成像研究中的偏差提供了潜在的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AI improves consistency in regional brain volumes measured in ultra-low-field MRI and 3T MRI.

This study compares volumetric measurements of various brain regions using different magnetic resonance imaging (MRI) modalities and deep learning models, specifically 3T MRI, ultra-low field (ULF) MRI at 64mT, and AI-enhanced ULF MRI using SynthSR and HiLoResGAN. The aim is to evaluate the alignment and agreement among field strengths and ULF MRI with and without AI. Descriptive statistics, paired t-tests, effect size analyses, and regression analyses are employed to assess the relationships and differences between modalities. The results indicate that volumetric measurements derived from 64mT MRI deviate significantly from those obtained using 3T MRI. By leveraging SynthSR and LoHiResGAN models, these deviations are reduced, bringing the volumetric estimates closer to those obtained from 3T MRI, which serves as the reference standard for brain volume quantification. These findings highlight that deep learning models can reduce systematic differences in brain volume measurements across field strengths, providing potential solutions to minimize bias in imaging studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信