基于多智能体强化学习的三维圆柱向湍流过渡的流动控制。

Pol Suárez, Francisco Alcántara-Ávila, Jean Rabault, Arnau Miró, Bernat Font, Oriol Lehmkuhl, Ricardo Vinuesa
{"title":"基于多智能体强化学习的三维圆柱向湍流过渡的流动控制。","authors":"Pol Suárez, Francisco Alcántara-Ávila, Jean Rabault, Arnau Miró, Bernat Font, Oriol Lehmkuhl, Ricardo Vinuesa","doi":"10.1038/s44172-025-00446-x","DOIUrl":null,"url":null,"abstract":"<p><p>Active flow control strategies for three-dimensional bluff bodies are challenging to design, yet critical for industrial applications. Here we explore the potential of discovering novel drag-reduction strategies using deep reinforcement learning. We introduce a high-dimensional active flow control setup on a three-dimensional cylinder at Reynolds numbers (Re<sub>D</sub>) from 100 to 400, spanning the transition to three-dimensional wake instabilities. The setup involves multiple zero-net-mass-flux jets and couples a computational fluid dynamics solver with a numerical multi-agent reinforcement learning framework based on the proximal policy optimization algorithm. Our results demonstrate up to 16% drag reduction at Re<sub>D</sub> = 400, outperforming classical periodic control strategies. A proper orthogonal decomposition analysis reveals that the control leads to a stabilized wake structure with an elongated recirculation bubble. These findings represent the first demonstration of training on three-dimensional cylinders and pave the way toward active flow control of complex turbulent flows.</p>","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":"4 1","pages":"113"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12177081/pdf/","citationCount":"0","resultStr":"{\"title\":\"Flow control of three-dimensional cylinders transitioning to turbulence via multi-agent reinforcement learning.\",\"authors\":\"Pol Suárez, Francisco Alcántara-Ávila, Jean Rabault, Arnau Miró, Bernat Font, Oriol Lehmkuhl, Ricardo Vinuesa\",\"doi\":\"10.1038/s44172-025-00446-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Active flow control strategies for three-dimensional bluff bodies are challenging to design, yet critical for industrial applications. Here we explore the potential of discovering novel drag-reduction strategies using deep reinforcement learning. We introduce a high-dimensional active flow control setup on a three-dimensional cylinder at Reynolds numbers (Re<sub>D</sub>) from 100 to 400, spanning the transition to three-dimensional wake instabilities. The setup involves multiple zero-net-mass-flux jets and couples a computational fluid dynamics solver with a numerical multi-agent reinforcement learning framework based on the proximal policy optimization algorithm. Our results demonstrate up to 16% drag reduction at Re<sub>D</sub> = 400, outperforming classical periodic control strategies. A proper orthogonal decomposition analysis reveals that the control leads to a stabilized wake structure with an elongated recirculation bubble. These findings represent the first demonstration of training on three-dimensional cylinders and pave the way toward active flow control of complex turbulent flows.</p>\",\"PeriodicalId\":72644,\"journal\":{\"name\":\"Communications engineering\",\"volume\":\"4 1\",\"pages\":\"113\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12177081/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s44172-025-00446-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44172-025-00446-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

三维钝体主动流动控制策略的设计具有挑战性,但对工业应用至关重要。在这里,我们探索了使用深度强化学习发现新型减阻策略的潜力。我们在雷诺数(ReD)从100到400的三维圆柱体上引入了一个高维主动流动控制装置,跨越了向三维尾迹不稳定的过渡。该模型涉及多个零净质量通量射流,并将计算流体动力学求解器与基于近端策略优化算法的数值多智能体强化学习框架相结合。我们的研究结果表明,在ReD = 400时,阻力减少了16%,优于传统的周期性控制策略。适当的正交分解分析表明,这种控制使尾流结构趋于稳定,尾流结构具有细长的再循环气泡。这些发现代表了三维圆柱体训练的首次演示,并为复杂湍流的主动流动控制铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flow control of three-dimensional cylinders transitioning to turbulence via multi-agent reinforcement learning.

Active flow control strategies for three-dimensional bluff bodies are challenging to design, yet critical for industrial applications. Here we explore the potential of discovering novel drag-reduction strategies using deep reinforcement learning. We introduce a high-dimensional active flow control setup on a three-dimensional cylinder at Reynolds numbers (ReD) from 100 to 400, spanning the transition to three-dimensional wake instabilities. The setup involves multiple zero-net-mass-flux jets and couples a computational fluid dynamics solver with a numerical multi-agent reinforcement learning framework based on the proximal policy optimization algorithm. Our results demonstrate up to 16% drag reduction at ReD = 400, outperforming classical periodic control strategies. A proper orthogonal decomposition analysis reveals that the control leads to a stabilized wake structure with an elongated recirculation bubble. These findings represent the first demonstration of training on three-dimensional cylinders and pave the way toward active flow control of complex turbulent flows.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信