拉伸-缩短循环效应与皮质或脊髓兴奋性调节无关。

IF 4.7 2区 医学 Q1 NEUROSCIENCES
Lea-Fedia Rissmann, Brent James Raiteri, Wolfgang Seiberl, Tobias Siebert, Daniel Hahn
{"title":"拉伸-缩短循环效应与皮质或脊髓兴奋性调节无关。","authors":"Lea-Fedia Rissmann, Brent James Raiteri, Wolfgang Seiberl, Tobias Siebert, Daniel Hahn","doi":"10.1113/JP287508","DOIUrl":null,"url":null,"abstract":"<p><p>It is unclear whether cortical and spinal excitability modulations contribute to enhanced stretch-shortening cycle (SSC) performance. Therefore, this study investigated cortical and spinal excitability modulations during and following shortening of SSC contractions compared with pure shortening (SHO) contractions. Participants (n = 18) performed submaximal voluntary plantar flexion contractions while prone on the dynamometer bench. The right foot was strapped onto the dynamometer's footplate attachment, and the resultant ankle joint torque and crank arm angle were recorded. Cortical and spinal excitability modulations of the soleus muscle were analysed by eliciting compound muscle actional potentials via electrical nerve stimulation, cervicomedullary motor-evoked potentials (CMEPs) via electrical stimulation of the spinal cord, and motor-evoked potentials (MEPs) via magnetic stimulation of the motor cortex. Mean torque following stretch was significantly increased by 7 ± 3% (P = 0.029) compared with the fixed-end reference (REF) contraction, and mean torque during shortening of SSC compared with SHO was significantly increased by 12 ± 24% (P = 0.046). Mean steady-state torque was significantly lower by 13 ± 3% (P = 0.006) and 9 ± 12% (P = 0.011) following SSC compared with REF and SHO, respectively. Mean steady-state torque was not significantly different following SHO compared with REF (7 ± 8%, P = 0.456). CMEPs and MEPs were also not significantly different during shortening of SSC compared with SHO (P ≥ 0.885) or during the steady state of SSC, SHO and REF (P ≥ 0.727). Therefore, our results indicate that SSC performance was not associated with cortical or spinal excitability modulations during or after shortening, but rather driven by mechanical mechanisms triggered during active stretch. KEY POINTS: A stretch-shortening cycle (SSC) effect of 12% was observed during EMG-matched submaximal voluntary contractions of the human plantar flexors. The SSC effect was neither associated with cortical or spinal excitability modulations nor with stretch-reflex activity. The SSC effect was likely driven by mechanical mechanisms related to active muscle stretch, which have long-lasting effects during shortening. Residual force depression following SSC was not attenuated by the long-lasting mechanical mechanisms triggered during active muscle stretch. Steady-state torques were lower following shortening of SSCs versus pure shortening and fixed-end contractions at the same final ankle joint angle, but the torque differences were not correlated with cortical or spinal excitability modulations.</p>","PeriodicalId":50088,"journal":{"name":"Journal of Physiology-London","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The stretch-shortening cycle effect is not associated with cortical or spinal excitability modulations.\",\"authors\":\"Lea-Fedia Rissmann, Brent James Raiteri, Wolfgang Seiberl, Tobias Siebert, Daniel Hahn\",\"doi\":\"10.1113/JP287508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It is unclear whether cortical and spinal excitability modulations contribute to enhanced stretch-shortening cycle (SSC) performance. Therefore, this study investigated cortical and spinal excitability modulations during and following shortening of SSC contractions compared with pure shortening (SHO) contractions. Participants (n = 18) performed submaximal voluntary plantar flexion contractions while prone on the dynamometer bench. The right foot was strapped onto the dynamometer's footplate attachment, and the resultant ankle joint torque and crank arm angle were recorded. Cortical and spinal excitability modulations of the soleus muscle were analysed by eliciting compound muscle actional potentials via electrical nerve stimulation, cervicomedullary motor-evoked potentials (CMEPs) via electrical stimulation of the spinal cord, and motor-evoked potentials (MEPs) via magnetic stimulation of the motor cortex. Mean torque following stretch was significantly increased by 7 ± 3% (P = 0.029) compared with the fixed-end reference (REF) contraction, and mean torque during shortening of SSC compared with SHO was significantly increased by 12 ± 24% (P = 0.046). Mean steady-state torque was significantly lower by 13 ± 3% (P = 0.006) and 9 ± 12% (P = 0.011) following SSC compared with REF and SHO, respectively. Mean steady-state torque was not significantly different following SHO compared with REF (7 ± 8%, P = 0.456). CMEPs and MEPs were also not significantly different during shortening of SSC compared with SHO (P ≥ 0.885) or during the steady state of SSC, SHO and REF (P ≥ 0.727). Therefore, our results indicate that SSC performance was not associated with cortical or spinal excitability modulations during or after shortening, but rather driven by mechanical mechanisms triggered during active stretch. KEY POINTS: A stretch-shortening cycle (SSC) effect of 12% was observed during EMG-matched submaximal voluntary contractions of the human plantar flexors. The SSC effect was neither associated with cortical or spinal excitability modulations nor with stretch-reflex activity. The SSC effect was likely driven by mechanical mechanisms related to active muscle stretch, which have long-lasting effects during shortening. Residual force depression following SSC was not attenuated by the long-lasting mechanical mechanisms triggered during active muscle stretch. Steady-state torques were lower following shortening of SSCs versus pure shortening and fixed-end contractions at the same final ankle joint angle, but the torque differences were not correlated with cortical or spinal excitability modulations.</p>\",\"PeriodicalId\":50088,\"journal\":{\"name\":\"Journal of Physiology-London\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physiology-London\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1113/JP287508\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physiology-London","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1113/JP287508","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

目前尚不清楚皮质和脊髓兴奋性调节是否有助于增强拉伸-缩短周期(SSC)的表现。因此,本研究比较了SSC收缩与单纯缩短(SHO)收缩期间和之后的皮质和脊髓兴奋性调节。参与者(n = 18)俯卧在测力台上进行次最大的自主足底屈曲收缩。将右脚绑在测功机的底板附件上,记录由此产生的踝关节扭矩和曲柄臂角度。通过电神经刺激诱发复合肌肉动作电位,脊髓电刺激诱发颈髓运动诱发电位(CMEPs),运动皮层磁刺激诱发电位(MEPs),分析比目鱼肌皮层和脊髓兴奋性的调节。与固定端参考(REF)收缩相比,拉伸后的平均扭矩显著增加7±3% (P = 0.029), SSC缩短期间的平均扭矩与SHO相比显著增加12±24% (P = 0.046)。与REF和SHO相比,SSC的平均稳态扭矩分别降低了13±3% (P = 0.006)和9±12% (P = 0.011)。与REF相比,SHO后的平均稳态扭矩无显著差异(7±8%,P = 0.456)。SSC缩短期间CMEPs和MEPs与SHO比较差异无统计学意义(P≥0.885),SSC、SHO和REF稳定期间CMEPs和MEPs差异无统计学意义(P≥0.727)。因此,我们的研究结果表明,SSC的表现与缩短期间或之后的皮质或脊髓兴奋性调节无关,而是由主动拉伸期间触发的机械机制驱动的。关键点:在肌电图匹配的人类足底屈肌亚极大自主收缩期间,观察到12%的拉伸-缩短周期(SSC)效应。SSC效应与皮质或脊髓兴奋性调节无关,也与拉伸反射活动无关。SSC效应可能是由与主动肌肉拉伸相关的机械机制驱动的,在缩短过程中具有持久的影响。在主动肌肉拉伸过程中触发的持久机械机制不会减弱SSC后的残余力抑制。在相同的踝关节最终角度下,ssc缩短后的稳态扭矩比单纯缩短和固定端收缩后的稳态扭矩低,但扭矩差异与皮质或脊髓兴奋性调节无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The stretch-shortening cycle effect is not associated with cortical or spinal excitability modulations.

It is unclear whether cortical and spinal excitability modulations contribute to enhanced stretch-shortening cycle (SSC) performance. Therefore, this study investigated cortical and spinal excitability modulations during and following shortening of SSC contractions compared with pure shortening (SHO) contractions. Participants (n = 18) performed submaximal voluntary plantar flexion contractions while prone on the dynamometer bench. The right foot was strapped onto the dynamometer's footplate attachment, and the resultant ankle joint torque and crank arm angle were recorded. Cortical and spinal excitability modulations of the soleus muscle were analysed by eliciting compound muscle actional potentials via electrical nerve stimulation, cervicomedullary motor-evoked potentials (CMEPs) via electrical stimulation of the spinal cord, and motor-evoked potentials (MEPs) via magnetic stimulation of the motor cortex. Mean torque following stretch was significantly increased by 7 ± 3% (P = 0.029) compared with the fixed-end reference (REF) contraction, and mean torque during shortening of SSC compared with SHO was significantly increased by 12 ± 24% (P = 0.046). Mean steady-state torque was significantly lower by 13 ± 3% (P = 0.006) and 9 ± 12% (P = 0.011) following SSC compared with REF and SHO, respectively. Mean steady-state torque was not significantly different following SHO compared with REF (7 ± 8%, P = 0.456). CMEPs and MEPs were also not significantly different during shortening of SSC compared with SHO (P ≥ 0.885) or during the steady state of SSC, SHO and REF (P ≥ 0.727). Therefore, our results indicate that SSC performance was not associated with cortical or spinal excitability modulations during or after shortening, but rather driven by mechanical mechanisms triggered during active stretch. KEY POINTS: A stretch-shortening cycle (SSC) effect of 12% was observed during EMG-matched submaximal voluntary contractions of the human plantar flexors. The SSC effect was neither associated with cortical or spinal excitability modulations nor with stretch-reflex activity. The SSC effect was likely driven by mechanical mechanisms related to active muscle stretch, which have long-lasting effects during shortening. Residual force depression following SSC was not attenuated by the long-lasting mechanical mechanisms triggered during active muscle stretch. Steady-state torques were lower following shortening of SSCs versus pure shortening and fixed-end contractions at the same final ankle joint angle, but the torque differences were not correlated with cortical or spinal excitability modulations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physiology-London
Journal of Physiology-London 医学-神经科学
CiteScore
9.70
自引率
7.30%
发文量
817
审稿时长
2 months
期刊介绍: The Journal of Physiology publishes full-length original Research Papers and Techniques for Physiology, which are short papers aimed at disseminating new techniques for physiological research. Articles solicited by the Editorial Board include Perspectives, Symposium Reports and Topical Reviews, which highlight areas of special physiological interest. CrossTalk articles are short editorial-style invited articles framing a debate between experts in the field on controversial topics. Letters to the Editor and Journal Club articles are also published. All categories of papers are subjected to peer reivew. The Journal of Physiology welcomes submitted research papers in all areas of physiology. Authors should present original work that illustrates new physiological principles or mechanisms. Papers on work at the molecular level, at the level of the cell membrane, single cells, tissues or organs and on systems physiology are all acceptable. Theoretical papers and papers that use computational models to further our understanding of physiological processes will be considered if based on experimentally derived data and if the hypothesis advanced is directly amenable to experimental testing. While emphasis is on human and mammalian physiology, work on lower vertebrate or invertebrate preparations may be suitable if it furthers the understanding of the functioning of other organisms including mammals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信