Aoife D Slyne, David P Burns, Karina Wöller, Amandine May, Roisin Dowd, Sarah E Drummond, Grzegorz Jasionek, Ken D O'Halloran
{"title":"杜氏肌营养不良mdx模型小鼠早、晚期的专、副呼吸肌结构、功能及控制","authors":"Aoife D Slyne, David P Burns, Karina Wöller, Amandine May, Roisin Dowd, Sarah E Drummond, Grzegorz Jasionek, Ken D O'Halloran","doi":"10.1113/JP288709","DOIUrl":null,"url":null,"abstract":"<p><p>Peak inspiratory pressure-generating capacity is preserved in the mdx mouse model of Duchenne muscular dystrophy in early disease, despite profound diaphragm muscle weakness and reduced electrical activation, revealing adequate compensation by extra-diaphragmatic muscles. Respiratory system compensation is lost as disease progresses, with the emergence of reduced peak inspiratory pressure-generating capacity in advanced disease. We hypothesised that extra-diaphragmatic inspiratory muscles compensate for diaphragm dysfunction in early dystrophic disease, supporting the maintenance of peak respiratory performance in mdx mice. We reasoned that extra-diaphragmatic muscle dysfunction would emerge with progressive disease, leading to the loss of peak inspiratory pressure-generating capacity in advanced dystrophic disease. We measured ventilation, inspiratory pressure, and obligatory (diaphragm, intercostal and parasternal) and accessory (sternomastoid, cleidomastoid, scalene and trapezius) respiratory muscle form, function and EMG activity in early (4 months) and advanced (16 months) dystrophic disease. Despite obligatory and accessory muscle dysfunction, including structural remodelling, weakness and reduced EMG activity, peak inspiratory pressure-generating capacity and ventilation are preserved in early disease. Obligatory and accessory muscle dysfunction progressively declines with advanced disease, with the emergence of reduced peak inspiratory pressure-generating capacity. However, although there was evidence of progressive accessory muscle dysfunction, more profound remodelling was seen in the diaphragm muscle comparing early and advanced dystrophic disease. In conclusion, in early dystrophic disease, peak inspiratory performance is compensated. A progressive decline in diaphragm and extra-diaphragmatic muscles contributes to respiratory system compromise in advanced disease. Further loss of compensation afforded by extra-diaphragmatic muscles probably contributes to end-stage respiratory failure. KEY POINTS: We characterised obligatory and accessory respiratory muscle form, function and control in early and advanced disease in the mdx mouse model of Duchenne muscular dystrophy. Profound diaphragm muscle remodelling, immune cell infiltration, elevated cytokine concentrations and dysfunction present in early disease, but peak inspiratory performance is fully compensated. The burden of breathing is shared across many muscles, revealed as remodelling, elevated cytokine concentrations, weakness and impaired control in several obligatory and accessory muscles. Peak inspiratory performance declines in advanced disease with evidence of progressive remodelling in the diaphragm muscle with extensive fibrosis and further decline in the form, function and control of accessory muscles of breathing. Diaphragm remodelling with profound fibrosis, more so than progressive accessory muscle remodelling (although evident), is the striking phenotype at 16 months of age when the decline in peak inspiratory performance appears. The progressive decline to end-stage disease (∼20-22 months of age in mdx mice) probably relates to continued profound loss of diaphragm contractile function and loss of compensatory support provided by extra-diaphragmatic muscles. Logistically convenient models of rapid, progressive muscular dystrophy are required to facilitate the study of end-stage disease.</p>","PeriodicalId":50088,"journal":{"name":"Journal of Physiology-London","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Obligatory and accessory respiratory muscle structure, function and control in early and advanced disease in the mdx mouse model of Duchenne muscular dystrophy.\",\"authors\":\"Aoife D Slyne, David P Burns, Karina Wöller, Amandine May, Roisin Dowd, Sarah E Drummond, Grzegorz Jasionek, Ken D O'Halloran\",\"doi\":\"10.1113/JP288709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Peak inspiratory pressure-generating capacity is preserved in the mdx mouse model of Duchenne muscular dystrophy in early disease, despite profound diaphragm muscle weakness and reduced electrical activation, revealing adequate compensation by extra-diaphragmatic muscles. Respiratory system compensation is lost as disease progresses, with the emergence of reduced peak inspiratory pressure-generating capacity in advanced disease. We hypothesised that extra-diaphragmatic inspiratory muscles compensate for diaphragm dysfunction in early dystrophic disease, supporting the maintenance of peak respiratory performance in mdx mice. We reasoned that extra-diaphragmatic muscle dysfunction would emerge with progressive disease, leading to the loss of peak inspiratory pressure-generating capacity in advanced dystrophic disease. We measured ventilation, inspiratory pressure, and obligatory (diaphragm, intercostal and parasternal) and accessory (sternomastoid, cleidomastoid, scalene and trapezius) respiratory muscle form, function and EMG activity in early (4 months) and advanced (16 months) dystrophic disease. Despite obligatory and accessory muscle dysfunction, including structural remodelling, weakness and reduced EMG activity, peak inspiratory pressure-generating capacity and ventilation are preserved in early disease. Obligatory and accessory muscle dysfunction progressively declines with advanced disease, with the emergence of reduced peak inspiratory pressure-generating capacity. However, although there was evidence of progressive accessory muscle dysfunction, more profound remodelling was seen in the diaphragm muscle comparing early and advanced dystrophic disease. In conclusion, in early dystrophic disease, peak inspiratory performance is compensated. A progressive decline in diaphragm and extra-diaphragmatic muscles contributes to respiratory system compromise in advanced disease. Further loss of compensation afforded by extra-diaphragmatic muscles probably contributes to end-stage respiratory failure. KEY POINTS: We characterised obligatory and accessory respiratory muscle form, function and control in early and advanced disease in the mdx mouse model of Duchenne muscular dystrophy. Profound diaphragm muscle remodelling, immune cell infiltration, elevated cytokine concentrations and dysfunction present in early disease, but peak inspiratory performance is fully compensated. The burden of breathing is shared across many muscles, revealed as remodelling, elevated cytokine concentrations, weakness and impaired control in several obligatory and accessory muscles. Peak inspiratory performance declines in advanced disease with evidence of progressive remodelling in the diaphragm muscle with extensive fibrosis and further decline in the form, function and control of accessory muscles of breathing. Diaphragm remodelling with profound fibrosis, more so than progressive accessory muscle remodelling (although evident), is the striking phenotype at 16 months of age when the decline in peak inspiratory performance appears. The progressive decline to end-stage disease (∼20-22 months of age in mdx mice) probably relates to continued profound loss of diaphragm contractile function and loss of compensatory support provided by extra-diaphragmatic muscles. Logistically convenient models of rapid, progressive muscular dystrophy are required to facilitate the study of end-stage disease.</p>\",\"PeriodicalId\":50088,\"journal\":{\"name\":\"Journal of Physiology-London\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physiology-London\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1113/JP288709\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physiology-London","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1113/JP288709","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Obligatory and accessory respiratory muscle structure, function and control in early and advanced disease in the mdx mouse model of Duchenne muscular dystrophy.
Peak inspiratory pressure-generating capacity is preserved in the mdx mouse model of Duchenne muscular dystrophy in early disease, despite profound diaphragm muscle weakness and reduced electrical activation, revealing adequate compensation by extra-diaphragmatic muscles. Respiratory system compensation is lost as disease progresses, with the emergence of reduced peak inspiratory pressure-generating capacity in advanced disease. We hypothesised that extra-diaphragmatic inspiratory muscles compensate for diaphragm dysfunction in early dystrophic disease, supporting the maintenance of peak respiratory performance in mdx mice. We reasoned that extra-diaphragmatic muscle dysfunction would emerge with progressive disease, leading to the loss of peak inspiratory pressure-generating capacity in advanced dystrophic disease. We measured ventilation, inspiratory pressure, and obligatory (diaphragm, intercostal and parasternal) and accessory (sternomastoid, cleidomastoid, scalene and trapezius) respiratory muscle form, function and EMG activity in early (4 months) and advanced (16 months) dystrophic disease. Despite obligatory and accessory muscle dysfunction, including structural remodelling, weakness and reduced EMG activity, peak inspiratory pressure-generating capacity and ventilation are preserved in early disease. Obligatory and accessory muscle dysfunction progressively declines with advanced disease, with the emergence of reduced peak inspiratory pressure-generating capacity. However, although there was evidence of progressive accessory muscle dysfunction, more profound remodelling was seen in the diaphragm muscle comparing early and advanced dystrophic disease. In conclusion, in early dystrophic disease, peak inspiratory performance is compensated. A progressive decline in diaphragm and extra-diaphragmatic muscles contributes to respiratory system compromise in advanced disease. Further loss of compensation afforded by extra-diaphragmatic muscles probably contributes to end-stage respiratory failure. KEY POINTS: We characterised obligatory and accessory respiratory muscle form, function and control in early and advanced disease in the mdx mouse model of Duchenne muscular dystrophy. Profound diaphragm muscle remodelling, immune cell infiltration, elevated cytokine concentrations and dysfunction present in early disease, but peak inspiratory performance is fully compensated. The burden of breathing is shared across many muscles, revealed as remodelling, elevated cytokine concentrations, weakness and impaired control in several obligatory and accessory muscles. Peak inspiratory performance declines in advanced disease with evidence of progressive remodelling in the diaphragm muscle with extensive fibrosis and further decline in the form, function and control of accessory muscles of breathing. Diaphragm remodelling with profound fibrosis, more so than progressive accessory muscle remodelling (although evident), is the striking phenotype at 16 months of age when the decline in peak inspiratory performance appears. The progressive decline to end-stage disease (∼20-22 months of age in mdx mice) probably relates to continued profound loss of diaphragm contractile function and loss of compensatory support provided by extra-diaphragmatic muscles. Logistically convenient models of rapid, progressive muscular dystrophy are required to facilitate the study of end-stage disease.
期刊介绍:
The Journal of Physiology publishes full-length original Research Papers and Techniques for Physiology, which are short papers aimed at disseminating new techniques for physiological research. Articles solicited by the Editorial Board include Perspectives, Symposium Reports and Topical Reviews, which highlight areas of special physiological interest. CrossTalk articles are short editorial-style invited articles framing a debate between experts in the field on controversial topics. Letters to the Editor and Journal Club articles are also published. All categories of papers are subjected to peer reivew.
The Journal of Physiology welcomes submitted research papers in all areas of physiology. Authors should present original work that illustrates new physiological principles or mechanisms. Papers on work at the molecular level, at the level of the cell membrane, single cells, tissues or organs and on systems physiology are all acceptable. Theoretical papers and papers that use computational models to further our understanding of physiological processes will be considered if based on experimentally derived data and if the hypothesis advanced is directly amenable to experimental testing. While emphasis is on human and mammalian physiology, work on lower vertebrate or invertebrate preparations may be suitable if it furthers the understanding of the functioning of other organisms including mammals.