观察运动中的三维世界:大脑如何在自我运动中计算物体运动和深度。

IF 5.5 2区 医学 Q1 NEUROSCIENCES
Zhe-Xin Xu, Gregory C DeAngelis
{"title":"观察运动中的三维世界:大脑如何在自我运动中计算物体运动和深度。","authors":"Zhe-Xin Xu, Gregory C DeAngelis","doi":"10.1146/annurev-vision-110323-112124","DOIUrl":null,"url":null,"abstract":"<p><p>Humans and other animals move their eyes, heads, and bodies to interact with their surroundings. While essential for survival, these movements produce additional sensory signals that complicate visual scene analysis. However, these self-generated visual signals offer valuable information about self-motion and the three-dimensional structure of the environment. In this review, we examine recent advances in understanding depth and motion perception during self-motion, along with the underlying neural mechanisms. We also propose a comprehensive framework that integrates various visual phenomena, including optic flow parsing, depth from motion parallax, and coordinate transformation. The studies reviewed here begin to provide a more complete picture of how the visual system carries out a set of complex computations to jointly infer object motion, self-motion, and depth.</p>","PeriodicalId":48658,"journal":{"name":"Annual Review of Vision Science","volume":" ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seeing a Three-Dimensional World in Motion: How the Brain Computes Object Motion and Depth During Self-Motion.\",\"authors\":\"Zhe-Xin Xu, Gregory C DeAngelis\",\"doi\":\"10.1146/annurev-vision-110323-112124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Humans and other animals move their eyes, heads, and bodies to interact with their surroundings. While essential for survival, these movements produce additional sensory signals that complicate visual scene analysis. However, these self-generated visual signals offer valuable information about self-motion and the three-dimensional structure of the environment. In this review, we examine recent advances in understanding depth and motion perception during self-motion, along with the underlying neural mechanisms. We also propose a comprehensive framework that integrates various visual phenomena, including optic flow parsing, depth from motion parallax, and coordinate transformation. The studies reviewed here begin to provide a more complete picture of how the visual system carries out a set of complex computations to jointly infer object motion, self-motion, and depth.</p>\",\"PeriodicalId\":48658,\"journal\":{\"name\":\"Annual Review of Vision Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Vision Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-vision-110323-112124\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Vision Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-vision-110323-112124","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

人类和其他动物通过移动眼睛、头部和身体来与周围环境互动。虽然这些动作对生存至关重要,但它们会产生额外的感官信号,使视觉场景分析变得复杂。然而,这些自我产生的视觉信号提供了关于自我运动和环境三维结构的宝贵信息。在这篇综述中,我们研究了在自我运动过程中对深度和运动感知的理解以及潜在的神经机制的最新进展。我们还提出了一个整合各种视觉现象的综合框架,包括光流解析、运动视差深度和坐标变换。这里回顾的研究开始提供一个更完整的画面,视觉系统如何执行一组复杂的计算来共同推断物体运动,自我运动和深度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Seeing a Three-Dimensional World in Motion: How the Brain Computes Object Motion and Depth During Self-Motion.

Humans and other animals move their eyes, heads, and bodies to interact with their surroundings. While essential for survival, these movements produce additional sensory signals that complicate visual scene analysis. However, these self-generated visual signals offer valuable information about self-motion and the three-dimensional structure of the environment. In this review, we examine recent advances in understanding depth and motion perception during self-motion, along with the underlying neural mechanisms. We also propose a comprehensive framework that integrates various visual phenomena, including optic flow parsing, depth from motion parallax, and coordinate transformation. The studies reviewed here begin to provide a more complete picture of how the visual system carries out a set of complex computations to jointly infer object motion, self-motion, and depth.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual Review of Vision Science
Annual Review of Vision Science Medicine-Ophthalmology
CiteScore
11.10
自引率
1.70%
发文量
19
期刊介绍: The Annual Review of Vision Science reviews progress in the visual sciences, a cross-cutting set of disciplines which intersect psychology, neuroscience, computer science, cell biology and genetics, and clinical medicine. The journal covers a broad range of topics and techniques, including optics, retina, central visual processing, visual perception, eye movements, visual development, vision models, computer vision, and the mechanisms of visual disease, dysfunction, and sight restoration. The study of vision is central to progress in many areas of science, and this new journal will explore and expose the connections that link it to biology, behavior, computation, engineering, and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信