Cha Yeon Kim, Cholong Jeong, Hun Lee, Changmo Hwang
{"title":"脱细胞猪角膜细胞外基质支架再生角膜内皮的研究。","authors":"Cha Yeon Kim, Cholong Jeong, Hun Lee, Changmo Hwang","doi":"10.1007/s13770-025-00734-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>To evaluate the structural, biochemical, and functional performance of decellularized porcine corneal extracellular matrix (dECM) scaffolds for engineering human corneal endothelium.</p><p><strong>Methods: </strong>Porcine corneas were decellularized using either 0.3% sodium dodecyl sulfate (SDS) or 1.5 M sodium chloride (NaCl), followed by enzymatic nucleic acid digestion. Histological and biochemical analyses were performed to assess decellularization efficiency and extracellular matrix preservation. Human corneal endothelial cells (hCECs) were cultured on SDS-dECM scaffolds to evaluate cytocompatibility, morphology, and functional outcomes. Therapeutic efficacy was further assessed using a rabbit model of corneal endothelial dystrophy (CED).</p><p><strong>Results: </strong>SDS-treated corneas showed superior nuclear clearance (residual DNA: 123.60 ± 8.92 ng/mg) compared to NaCl (146.15 ± 5.49 ng/mg), with 95.2% retention of sulfated glycosaminoglycans (sGAGs) and moderate collagen loss (40% of native). In contrast, NaCl better preserved collagen (100% of native) but exhibited incomplete decellularization and lower sGAG retention (71.0%). In vitro, hCECs cultured on SDS-dECM exhibited progressive proliferation, with cell viability surpassing that of TCPS by day 14 (389.01 ± 5.68 vs. 359.65 ± 7.92, p < 0.05). Immunofluorescence confirmed polygonal morphology and ZO-1 expression, indicating intact barrier phenotype. Transparency of dECM scaffolds improved with hCEC culture, with light transmittance at 400 nm increasing from 65.82% (acellular) to 90.13% (double-sided culture). In vivo transplantation of hCEC-seeded SDS-dECM resulted in dose-dependent corneal clarity restoration, with the high-dose group achieving transparency and pachymetry comparable to normal corneas (thickness ~ 602 µm, grading score 0.00 ± 0.00) by 16 weeks.</p><p><strong>Conclusions: </strong>SDS-dECM scaffolds demonstrated excellent biocompatibility and functional support for human corneal endothelial cells, both in vitro and in vivo. These findings support their potential use as bioengineered alternatives to donor corneas for treating endothelial dysfunction.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Corneal Endothelium Regeneration with Decellularized Porcine Corneal Extracellular Matrix Scaffolds.\",\"authors\":\"Cha Yeon Kim, Cholong Jeong, Hun Lee, Changmo Hwang\",\"doi\":\"10.1007/s13770-025-00734-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>To evaluate the structural, biochemical, and functional performance of decellularized porcine corneal extracellular matrix (dECM) scaffolds for engineering human corneal endothelium.</p><p><strong>Methods: </strong>Porcine corneas were decellularized using either 0.3% sodium dodecyl sulfate (SDS) or 1.5 M sodium chloride (NaCl), followed by enzymatic nucleic acid digestion. Histological and biochemical analyses were performed to assess decellularization efficiency and extracellular matrix preservation. Human corneal endothelial cells (hCECs) were cultured on SDS-dECM scaffolds to evaluate cytocompatibility, morphology, and functional outcomes. Therapeutic efficacy was further assessed using a rabbit model of corneal endothelial dystrophy (CED).</p><p><strong>Results: </strong>SDS-treated corneas showed superior nuclear clearance (residual DNA: 123.60 ± 8.92 ng/mg) compared to NaCl (146.15 ± 5.49 ng/mg), with 95.2% retention of sulfated glycosaminoglycans (sGAGs) and moderate collagen loss (40% of native). In contrast, NaCl better preserved collagen (100% of native) but exhibited incomplete decellularization and lower sGAG retention (71.0%). In vitro, hCECs cultured on SDS-dECM exhibited progressive proliferation, with cell viability surpassing that of TCPS by day 14 (389.01 ± 5.68 vs. 359.65 ± 7.92, p < 0.05). Immunofluorescence confirmed polygonal morphology and ZO-1 expression, indicating intact barrier phenotype. Transparency of dECM scaffolds improved with hCEC culture, with light transmittance at 400 nm increasing from 65.82% (acellular) to 90.13% (double-sided culture). In vivo transplantation of hCEC-seeded SDS-dECM resulted in dose-dependent corneal clarity restoration, with the high-dose group achieving transparency and pachymetry comparable to normal corneas (thickness ~ 602 µm, grading score 0.00 ± 0.00) by 16 weeks.</p><p><strong>Conclusions: </strong>SDS-dECM scaffolds demonstrated excellent biocompatibility and functional support for human corneal endothelial cells, both in vitro and in vivo. These findings support their potential use as bioengineered alternatives to donor corneas for treating endothelial dysfunction.</p>\",\"PeriodicalId\":23126,\"journal\":{\"name\":\"Tissue engineering and regenerative medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue engineering and regenerative medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13770-025-00734-9\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue engineering and regenerative medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13770-025-00734-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Corneal Endothelium Regeneration with Decellularized Porcine Corneal Extracellular Matrix Scaffolds.
Background: To evaluate the structural, biochemical, and functional performance of decellularized porcine corneal extracellular matrix (dECM) scaffolds for engineering human corneal endothelium.
Methods: Porcine corneas were decellularized using either 0.3% sodium dodecyl sulfate (SDS) or 1.5 M sodium chloride (NaCl), followed by enzymatic nucleic acid digestion. Histological and biochemical analyses were performed to assess decellularization efficiency and extracellular matrix preservation. Human corneal endothelial cells (hCECs) were cultured on SDS-dECM scaffolds to evaluate cytocompatibility, morphology, and functional outcomes. Therapeutic efficacy was further assessed using a rabbit model of corneal endothelial dystrophy (CED).
Results: SDS-treated corneas showed superior nuclear clearance (residual DNA: 123.60 ± 8.92 ng/mg) compared to NaCl (146.15 ± 5.49 ng/mg), with 95.2% retention of sulfated glycosaminoglycans (sGAGs) and moderate collagen loss (40% of native). In contrast, NaCl better preserved collagen (100% of native) but exhibited incomplete decellularization and lower sGAG retention (71.0%). In vitro, hCECs cultured on SDS-dECM exhibited progressive proliferation, with cell viability surpassing that of TCPS by day 14 (389.01 ± 5.68 vs. 359.65 ± 7.92, p < 0.05). Immunofluorescence confirmed polygonal morphology and ZO-1 expression, indicating intact barrier phenotype. Transparency of dECM scaffolds improved with hCEC culture, with light transmittance at 400 nm increasing from 65.82% (acellular) to 90.13% (double-sided culture). In vivo transplantation of hCEC-seeded SDS-dECM resulted in dose-dependent corneal clarity restoration, with the high-dose group achieving transparency and pachymetry comparable to normal corneas (thickness ~ 602 µm, grading score 0.00 ± 0.00) by 16 weeks.
Conclusions: SDS-dECM scaffolds demonstrated excellent biocompatibility and functional support for human corneal endothelial cells, both in vitro and in vivo. These findings support their potential use as bioengineered alternatives to donor corneas for treating endothelial dysfunction.
期刊介绍:
Tissue Engineering and Regenerative Medicine (Tissue Eng Regen Med, TERM), the official journal of the Korean Tissue Engineering and Regenerative Medicine Society, is a publication dedicated to providing research- based solutions to issues related to human diseases. This journal publishes articles that report substantial information and original findings on tissue engineering, medical biomaterials, cells therapy, stem cell biology and regenerative medicine.