小龙虾后肠运动的中枢神经系统调节与血清素能调节的相互作用。

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Royal Society Open Science Pub Date : 2025-06-18 eCollection Date: 2025-06-01 DOI:10.1098/rsos.250094
Spandan Pathak, Norma Peña-Flores, Phillip Alvarez, Jenna Feeley, Reza Ghodssi, Wolfgang Losert, Jens Herberholz
{"title":"小龙虾后肠运动的中枢神经系统调节与血清素能调节的相互作用。","authors":"Spandan Pathak, Norma Peña-Flores, Phillip Alvarez, Jenna Feeley, Reza Ghodssi, Wolfgang Losert, Jens Herberholz","doi":"10.1098/rsos.250094","DOIUrl":null,"url":null,"abstract":"<p><p>Motility is a critical function of the gastrointestinal (GI) system governed by neurogenic and myogenic processes. Due to its major role in maintaining homeostasis, overlapping mechanisms have evolved for its adaptive operation including modulation by the central nervous system (CNS), enteric nervous system (ENS) and intrinsic pacemaker cells. Our understanding of the modulatory mechanisms that underlie intestinal motility remains incomplete. Crayfish provide a tractable <i>ex vivo</i> model to study the interplay between CNS and neurochemical regulation of GI motor patterns. Our study investigated the effects of CNS denervation and exogenously applied serotonin (5-HT) on crayfish hindgut motility. Multiscale spatial measurements showed stable motility parameters throughout 90 min of control conditions. Denervation, i.e. separating the gut from the CNS, resulted in a significant decrease in the magnitude and synchrony of hindgut contractions, while preserving the underlying frequency and directional bias of the waves. Subsequent application of 5-HT to the denervated preparation enhanced motility but disrupted spatiotemporal coordination. Treatment with TTX (a sodium channel blocker) had minor impacts on motility metrics, indicating a prominent role of myogenic mechanisms. Our model provides a multiscale analysis framework to dissect CNS and interrelated neurochemistry contributions to GI motor dynamics.</p>","PeriodicalId":21525,"journal":{"name":"Royal Society Open Science","volume":"12 6","pages":"250094"},"PeriodicalIF":2.9000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12173514/pdf/","citationCount":"0","resultStr":"{\"title\":\"Interactions between CNS regulation and serotonergic modulation of crayfish hindgut motility.\",\"authors\":\"Spandan Pathak, Norma Peña-Flores, Phillip Alvarez, Jenna Feeley, Reza Ghodssi, Wolfgang Losert, Jens Herberholz\",\"doi\":\"10.1098/rsos.250094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Motility is a critical function of the gastrointestinal (GI) system governed by neurogenic and myogenic processes. Due to its major role in maintaining homeostasis, overlapping mechanisms have evolved for its adaptive operation including modulation by the central nervous system (CNS), enteric nervous system (ENS) and intrinsic pacemaker cells. Our understanding of the modulatory mechanisms that underlie intestinal motility remains incomplete. Crayfish provide a tractable <i>ex vivo</i> model to study the interplay between CNS and neurochemical regulation of GI motor patterns. Our study investigated the effects of CNS denervation and exogenously applied serotonin (5-HT) on crayfish hindgut motility. Multiscale spatial measurements showed stable motility parameters throughout 90 min of control conditions. Denervation, i.e. separating the gut from the CNS, resulted in a significant decrease in the magnitude and synchrony of hindgut contractions, while preserving the underlying frequency and directional bias of the waves. Subsequent application of 5-HT to the denervated preparation enhanced motility but disrupted spatiotemporal coordination. Treatment with TTX (a sodium channel blocker) had minor impacts on motility metrics, indicating a prominent role of myogenic mechanisms. Our model provides a multiscale analysis framework to dissect CNS and interrelated neurochemistry contributions to GI motor dynamics.</p>\",\"PeriodicalId\":21525,\"journal\":{\"name\":\"Royal Society Open Science\",\"volume\":\"12 6\",\"pages\":\"250094\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12173514/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Royal Society Open Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsos.250094\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Royal Society Open Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsos.250094","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

运动是胃肠(GI)系统的一项关键功能,受神经源性和肌源性过程的支配。由于其在维持体内平衡中的主要作用,其适应性运作的重叠机制已经进化,包括中枢神经系统(CNS)、肠神经系统(ENS)和内在起搏器细胞的调节。我们对肠道运动的调节机制的理解仍然不完整。小龙虾为研究中枢神经系统与胃肠道运动模式的神经化学调节之间的相互作用提供了一个易于处理的离体模型。本研究探讨了CNS去神经和外源性5-羟色胺(5-HT)对小龙虾后肠运动的影响。多尺度空间测量显示,在整个90分钟的控制条件下,运动参数稳定。去神经支配,即将肠道与中枢神经系统分离,导致后肠收缩的幅度和同步性显著降低,同时保留了波的潜在频率和方向偏差。随后将5-羟色胺应用于去神经制备增强了运动性,但破坏了时空协调。用TTX(一种钠通道阻滞剂)治疗对运动指标有轻微影响,表明肌生成机制的重要作用。我们的模型提供了一个多尺度的分析框架来解剖中枢神经系统和相关的神经化学对胃肠道运动动力学的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interactions between CNS regulation and serotonergic modulation of crayfish hindgut motility.

Motility is a critical function of the gastrointestinal (GI) system governed by neurogenic and myogenic processes. Due to its major role in maintaining homeostasis, overlapping mechanisms have evolved for its adaptive operation including modulation by the central nervous system (CNS), enteric nervous system (ENS) and intrinsic pacemaker cells. Our understanding of the modulatory mechanisms that underlie intestinal motility remains incomplete. Crayfish provide a tractable ex vivo model to study the interplay between CNS and neurochemical regulation of GI motor patterns. Our study investigated the effects of CNS denervation and exogenously applied serotonin (5-HT) on crayfish hindgut motility. Multiscale spatial measurements showed stable motility parameters throughout 90 min of control conditions. Denervation, i.e. separating the gut from the CNS, resulted in a significant decrease in the magnitude and synchrony of hindgut contractions, while preserving the underlying frequency and directional bias of the waves. Subsequent application of 5-HT to the denervated preparation enhanced motility but disrupted spatiotemporal coordination. Treatment with TTX (a sodium channel blocker) had minor impacts on motility metrics, indicating a prominent role of myogenic mechanisms. Our model provides a multiscale analysis framework to dissect CNS and interrelated neurochemistry contributions to GI motor dynamics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Royal Society Open Science
Royal Society Open Science Multidisciplinary-Multidisciplinary
CiteScore
6.00
自引率
0.00%
发文量
508
审稿时长
14 weeks
期刊介绍: Royal Society Open Science is a new open journal publishing high-quality original research across the entire range of science on the basis of objective peer-review. The journal covers the entire range of science and mathematics and will allow the Society to publish all the high-quality work it receives without the usual restrictions on scope, length or impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信