Mingming Chen, Yifan Tang, Qi Qi, Hongyi Dai, Yi Lin, Chengxiu Ling, Tenglong Li
{"title":"增强基于多模态架构的库存时间预测:利用大型语言模型(llm)来改进文本质量。","authors":"Mingming Chen, Yifan Tang, Qi Qi, Hongyi Dai, Yi Lin, Chengxiu Ling, Tenglong Li","doi":"10.1371/journal.pone.0326034","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to enhance stock timing predictions by leveraging large language models (LLMs), specifically GPT-4, to filter and analyze online investor comment data. Recognizing challenges such as variable comment quality, redundancy, and authenticity issues, we propose a multimodal architecture that integrates filtered comment data with stock price dynamics and technical indicators. Using data from nine Chinese banks, we compare four filtering models and demonstrate that employing GPT-4 significantly improves financial metrics like profit-loss ratio, win rate, and excess return rate. The multimodal architecture outperforms baseline models by effectively preprocessing comment data and combining it with quantitative financial data. While focused on Chinese banks, the approach can be adapted to broader markets by modifying the prompts of large language models. Our findings highlight the potential of LLMs in financial forecasting and provide more reliable decision support for investors.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 6","pages":"e0326034"},"PeriodicalIF":2.6000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12176147/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhancing stock timing predictions based on multimodal architecture: Leveraging large language models (LLMs) for text quality improvement.\",\"authors\":\"Mingming Chen, Yifan Tang, Qi Qi, Hongyi Dai, Yi Lin, Chengxiu Ling, Tenglong Li\",\"doi\":\"10.1371/journal.pone.0326034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aims to enhance stock timing predictions by leveraging large language models (LLMs), specifically GPT-4, to filter and analyze online investor comment data. Recognizing challenges such as variable comment quality, redundancy, and authenticity issues, we propose a multimodal architecture that integrates filtered comment data with stock price dynamics and technical indicators. Using data from nine Chinese banks, we compare four filtering models and demonstrate that employing GPT-4 significantly improves financial metrics like profit-loss ratio, win rate, and excess return rate. The multimodal architecture outperforms baseline models by effectively preprocessing comment data and combining it with quantitative financial data. While focused on Chinese banks, the approach can be adapted to broader markets by modifying the prompts of large language models. Our findings highlight the potential of LLMs in financial forecasting and provide more reliable decision support for investors.</p>\",\"PeriodicalId\":20189,\"journal\":{\"name\":\"PLoS ONE\",\"volume\":\"20 6\",\"pages\":\"e0326034\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12176147/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS ONE\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pone.0326034\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0326034","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Enhancing stock timing predictions based on multimodal architecture: Leveraging large language models (LLMs) for text quality improvement.
This study aims to enhance stock timing predictions by leveraging large language models (LLMs), specifically GPT-4, to filter and analyze online investor comment data. Recognizing challenges such as variable comment quality, redundancy, and authenticity issues, we propose a multimodal architecture that integrates filtered comment data with stock price dynamics and technical indicators. Using data from nine Chinese banks, we compare four filtering models and demonstrate that employing GPT-4 significantly improves financial metrics like profit-loss ratio, win rate, and excess return rate. The multimodal architecture outperforms baseline models by effectively preprocessing comment data and combining it with quantitative financial data. While focused on Chinese banks, the approach can be adapted to broader markets by modifying the prompts of large language models. Our findings highlight the potential of LLMs in financial forecasting and provide more reliable decision support for investors.
期刊介绍:
PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides:
* Open-access—freely accessible online, authors retain copyright
* Fast publication times
* Peer review by expert, practicing researchers
* Post-publication tools to indicate quality and impact
* Community-based dialogue on articles
* Worldwide media coverage