增强基于多模态架构的库存时间预测:利用大型语言模型(llm)来改进文本质量。

IF 2.6 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
PLoS ONE Pub Date : 2025-06-18 eCollection Date: 2025-01-01 DOI:10.1371/journal.pone.0326034
Mingming Chen, Yifan Tang, Qi Qi, Hongyi Dai, Yi Lin, Chengxiu Ling, Tenglong Li
{"title":"增强基于多模态架构的库存时间预测:利用大型语言模型(llm)来改进文本质量。","authors":"Mingming Chen, Yifan Tang, Qi Qi, Hongyi Dai, Yi Lin, Chengxiu Ling, Tenglong Li","doi":"10.1371/journal.pone.0326034","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to enhance stock timing predictions by leveraging large language models (LLMs), specifically GPT-4, to filter and analyze online investor comment data. Recognizing challenges such as variable comment quality, redundancy, and authenticity issues, we propose a multimodal architecture that integrates filtered comment data with stock price dynamics and technical indicators. Using data from nine Chinese banks, we compare four filtering models and demonstrate that employing GPT-4 significantly improves financial metrics like profit-loss ratio, win rate, and excess return rate. The multimodal architecture outperforms baseline models by effectively preprocessing comment data and combining it with quantitative financial data. While focused on Chinese banks, the approach can be adapted to broader markets by modifying the prompts of large language models. Our findings highlight the potential of LLMs in financial forecasting and provide more reliable decision support for investors.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 6","pages":"e0326034"},"PeriodicalIF":2.6000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12176147/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhancing stock timing predictions based on multimodal architecture: Leveraging large language models (LLMs) for text quality improvement.\",\"authors\":\"Mingming Chen, Yifan Tang, Qi Qi, Hongyi Dai, Yi Lin, Chengxiu Ling, Tenglong Li\",\"doi\":\"10.1371/journal.pone.0326034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aims to enhance stock timing predictions by leveraging large language models (LLMs), specifically GPT-4, to filter and analyze online investor comment data. Recognizing challenges such as variable comment quality, redundancy, and authenticity issues, we propose a multimodal architecture that integrates filtered comment data with stock price dynamics and technical indicators. Using data from nine Chinese banks, we compare four filtering models and demonstrate that employing GPT-4 significantly improves financial metrics like profit-loss ratio, win rate, and excess return rate. The multimodal architecture outperforms baseline models by effectively preprocessing comment data and combining it with quantitative financial data. While focused on Chinese banks, the approach can be adapted to broader markets by modifying the prompts of large language models. Our findings highlight the potential of LLMs in financial forecasting and provide more reliable decision support for investors.</p>\",\"PeriodicalId\":20189,\"journal\":{\"name\":\"PLoS ONE\",\"volume\":\"20 6\",\"pages\":\"e0326034\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12176147/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS ONE\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pone.0326034\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0326034","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在通过利用大型语言模型(llm),特别是GPT-4,来过滤和分析在线投资者评论数据,从而增强股票时机预测。认识到诸如可变评论质量、冗余和真实性问题等挑战,我们提出了一种多模式架构,将过滤后的评论数据与股票价格动态和技术指标集成在一起。利用来自中国九家银行的数据,我们比较了四种过滤模型,并证明采用GPT-4显著改善了损益率、胜率和超额收益率等财务指标。通过有效地预处理评论数据并将其与定量财务数据相结合,多模式架构优于基线模型。尽管该方法主要针对中国的银行,但通过修改大型语言模型的提示符,它可以适用于更广泛的市场。我们的研究结果突出了llm在财务预测方面的潜力,并为投资者提供了更可靠的决策支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhancing stock timing predictions based on multimodal architecture: Leveraging large language models (LLMs) for text quality improvement.

Enhancing stock timing predictions based on multimodal architecture: Leveraging large language models (LLMs) for text quality improvement.

Enhancing stock timing predictions based on multimodal architecture: Leveraging large language models (LLMs) for text quality improvement.

Enhancing stock timing predictions based on multimodal architecture: Leveraging large language models (LLMs) for text quality improvement.

This study aims to enhance stock timing predictions by leveraging large language models (LLMs), specifically GPT-4, to filter and analyze online investor comment data. Recognizing challenges such as variable comment quality, redundancy, and authenticity issues, we propose a multimodal architecture that integrates filtered comment data with stock price dynamics and technical indicators. Using data from nine Chinese banks, we compare four filtering models and demonstrate that employing GPT-4 significantly improves financial metrics like profit-loss ratio, win rate, and excess return rate. The multimodal architecture outperforms baseline models by effectively preprocessing comment data and combining it with quantitative financial data. While focused on Chinese banks, the approach can be adapted to broader markets by modifying the prompts of large language models. Our findings highlight the potential of LLMs in financial forecasting and provide more reliable decision support for investors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS ONE
PLoS ONE 生物-生物学
CiteScore
6.20
自引率
5.40%
发文量
14242
审稿时长
3.7 months
期刊介绍: PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides: * Open-access—freely accessible online, authors retain copyright * Fast publication times * Peer review by expert, practicing researchers * Post-publication tools to indicate quality and impact * Community-based dialogue on articles * Worldwide media coverage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信