{"title":"黄腐酚通过调节肠道微生物代谢物减轻炎症性肠病相关骨质疏松症。","authors":"Weiqing Fan, Tianshuang Xia, Yiping Jiang, Kun Li, Jianyong Han, Ruiqing Zhu, Yue Hu, Jianyong Zhu, Hua Nian, Hailiang Xin","doi":"10.1002/ptr.70001","DOIUrl":null,"url":null,"abstract":"<p><p>Patients with inflammatory bowel disease (IBD) frequently experience osteoporosis (OP) due to factors such as chronic inflammation, malnutrition, and corticosteroid use. However, there is currently a lack of effective pharmacological interventions for the prevention and treatment of IBD-associated OP. Xanthohumol (XAN), a natural flavonoid compound isolated from hops, has shown beneficial effects on both inflammation and osteoporosis. This study aimed to explore the therapeutic effects and potential mechanisms of XAN from hops on IBD-associated OP based on gut microbiota. The IBD-associated OP model was constructed by free drinking of dextran sulfate sodium (DSS). Therapeutic effects of XAN were investigated through disease activity index (DAI) scoring, colon pathology, mucosal barrier function, inflammatory factors, bone metabolism indicators, and femoral Micro-CT. Mechanisms of XAN regulating gut microbiota were preliminarily elucidated by 16S rDNA sequencing and non-targeted metabolomics. XAN could effectively alleviate colonic tissue inflammation and protect the intestinal mucosal barrier, further improve colonic pathological damage, and reduce the DAI scoring in DSS mice. It also exerted anti-IBD-associated OP effects by reducing serum inflammatory factors IL-6, IL-17A, and TNF-α, inhibiting serum CTX-I expression, promoting serum OPG expression, regulating calcium-phosphorus balance, and improving bone density and morphology. More importantly, 16S rDNA sequencing and untargeted metabolomics showed that XAN increased the abundance and diversity of the gut microbiota in DSS mice. By altering the abundance of specific bacterial taxa such as Turicibacter, norank_f__norank_o__Clostridia_UCG-014, norank_f__Muribaculaceae, and Faecalibaculum, XAN changed the metabolites of gut microbiota, thereby regulating the tryptophan (Trp) metabolism pathway, as well as improving the intestinal mucosal barrier and bone metabolism. XAN can improve the pathological injury of the colon and bone loss caused by IBD. The mechanism is to regulate Trp metabolism by intervening in gut microbiota, thereby protecting intestinal mucosal barrier function and promoting bone formation.</p>","PeriodicalId":20110,"journal":{"name":"Phytotherapy Research","volume":" ","pages":"3254-3270"},"PeriodicalIF":6.3000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Xanthohumol Alleviates Inflammatory Bowel Disease-Associated Osteoporosis via Regulating Gut Microbial Metabolites.\",\"authors\":\"Weiqing Fan, Tianshuang Xia, Yiping Jiang, Kun Li, Jianyong Han, Ruiqing Zhu, Yue Hu, Jianyong Zhu, Hua Nian, Hailiang Xin\",\"doi\":\"10.1002/ptr.70001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Patients with inflammatory bowel disease (IBD) frequently experience osteoporosis (OP) due to factors such as chronic inflammation, malnutrition, and corticosteroid use. However, there is currently a lack of effective pharmacological interventions for the prevention and treatment of IBD-associated OP. Xanthohumol (XAN), a natural flavonoid compound isolated from hops, has shown beneficial effects on both inflammation and osteoporosis. This study aimed to explore the therapeutic effects and potential mechanisms of XAN from hops on IBD-associated OP based on gut microbiota. The IBD-associated OP model was constructed by free drinking of dextran sulfate sodium (DSS). Therapeutic effects of XAN were investigated through disease activity index (DAI) scoring, colon pathology, mucosal barrier function, inflammatory factors, bone metabolism indicators, and femoral Micro-CT. Mechanisms of XAN regulating gut microbiota were preliminarily elucidated by 16S rDNA sequencing and non-targeted metabolomics. XAN could effectively alleviate colonic tissue inflammation and protect the intestinal mucosal barrier, further improve colonic pathological damage, and reduce the DAI scoring in DSS mice. It also exerted anti-IBD-associated OP effects by reducing serum inflammatory factors IL-6, IL-17A, and TNF-α, inhibiting serum CTX-I expression, promoting serum OPG expression, regulating calcium-phosphorus balance, and improving bone density and morphology. More importantly, 16S rDNA sequencing and untargeted metabolomics showed that XAN increased the abundance and diversity of the gut microbiota in DSS mice. By altering the abundance of specific bacterial taxa such as Turicibacter, norank_f__norank_o__Clostridia_UCG-014, norank_f__Muribaculaceae, and Faecalibaculum, XAN changed the metabolites of gut microbiota, thereby regulating the tryptophan (Trp) metabolism pathway, as well as improving the intestinal mucosal barrier and bone metabolism. XAN can improve the pathological injury of the colon and bone loss caused by IBD. The mechanism is to regulate Trp metabolism by intervening in gut microbiota, thereby protecting intestinal mucosal barrier function and promoting bone formation.</p>\",\"PeriodicalId\":20110,\"journal\":{\"name\":\"Phytotherapy Research\",\"volume\":\" \",\"pages\":\"3254-3270\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Phytotherapy Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/ptr.70001\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytotherapy Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ptr.70001","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Xanthohumol Alleviates Inflammatory Bowel Disease-Associated Osteoporosis via Regulating Gut Microbial Metabolites.
Patients with inflammatory bowel disease (IBD) frequently experience osteoporosis (OP) due to factors such as chronic inflammation, malnutrition, and corticosteroid use. However, there is currently a lack of effective pharmacological interventions for the prevention and treatment of IBD-associated OP. Xanthohumol (XAN), a natural flavonoid compound isolated from hops, has shown beneficial effects on both inflammation and osteoporosis. This study aimed to explore the therapeutic effects and potential mechanisms of XAN from hops on IBD-associated OP based on gut microbiota. The IBD-associated OP model was constructed by free drinking of dextran sulfate sodium (DSS). Therapeutic effects of XAN were investigated through disease activity index (DAI) scoring, colon pathology, mucosal barrier function, inflammatory factors, bone metabolism indicators, and femoral Micro-CT. Mechanisms of XAN regulating gut microbiota were preliminarily elucidated by 16S rDNA sequencing and non-targeted metabolomics. XAN could effectively alleviate colonic tissue inflammation and protect the intestinal mucosal barrier, further improve colonic pathological damage, and reduce the DAI scoring in DSS mice. It also exerted anti-IBD-associated OP effects by reducing serum inflammatory factors IL-6, IL-17A, and TNF-α, inhibiting serum CTX-I expression, promoting serum OPG expression, regulating calcium-phosphorus balance, and improving bone density and morphology. More importantly, 16S rDNA sequencing and untargeted metabolomics showed that XAN increased the abundance and diversity of the gut microbiota in DSS mice. By altering the abundance of specific bacterial taxa such as Turicibacter, norank_f__norank_o__Clostridia_UCG-014, norank_f__Muribaculaceae, and Faecalibaculum, XAN changed the metabolites of gut microbiota, thereby regulating the tryptophan (Trp) metabolism pathway, as well as improving the intestinal mucosal barrier and bone metabolism. XAN can improve the pathological injury of the colon and bone loss caused by IBD. The mechanism is to regulate Trp metabolism by intervening in gut microbiota, thereby protecting intestinal mucosal barrier function and promoting bone formation.
期刊介绍:
Phytotherapy Research is an internationally recognized pharmacological journal that serves as a trailblazing resource for biochemists, pharmacologists, and toxicologists. We strive to disseminate groundbreaking research on medicinal plants, pushing the boundaries of knowledge and understanding in this field.
Our primary focus areas encompass pharmacology, toxicology, and the clinical applications of herbs and natural products in medicine. We actively encourage submissions on the effects of commonly consumed food ingredients and standardized plant extracts. We welcome a range of contributions including original research papers, review articles, and letters.
By providing a platform for the latest developments and discoveries in phytotherapy, we aim to support the advancement of scientific knowledge and contribute to the improvement of modern medicine.