着丝质体的下一代遗传筛选。

IF 16.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
James Budzak, T Nicolai Siegel
{"title":"着丝质体的下一代遗传筛选。","authors":"James Budzak, T Nicolai Siegel","doi":"10.1093/nar/gkaf515","DOIUrl":null,"url":null,"abstract":"<p><p>The genomes of all organisms encode diverse functional elements, including thousands of genes and essential noncoding regions for gene regulation and genome organization. Systematic perturbation of these elements is crucial to understanding their roles and how their disruption impacts cellular function. Genetic perturbation approaches, which disrupt gene expression or function, provide valuable insights by linking genetic changes to observable phenotypes. However, perturbing individual genomic elements one at a time is impractical. Genetic screens overcome this limitation by enabling the simultaneous perturbation of numerous genomic elements within a single experiment. Traditionally, these screens relied on simple, high-throughput readouts such as cell fitness, differentiation, or one-dimensional fluorescence. However, recent advancements have introduced powerful technologies that combine genetic screens with image-based and single-cell sequencing readouts, allowing researchers to study how perturbations affect complex cellular phenotypes on a genome-wide scale. These innovations, alongside the development of CRISPR-Cas technologies, have significantly enhanced the precision, efficiency, and scalability of genetic screening approaches. In this review, we discuss the genetic screens performed in kinetoplastid parasites to date, emphasizing their application to both coding and noncoding regions of the genome. Furthermore, we explore how integrating image-based and single-cell sequencing technologies with genetic screens holds the potential to deliver unprecedented insights into cellular function and regulatory mechanisms.</p>","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"53 11","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12203798/pdf/","citationCount":"0","resultStr":"{\"title\":\"Next generation genetic screens in kinetoplastids.\",\"authors\":\"James Budzak, T Nicolai Siegel\",\"doi\":\"10.1093/nar/gkaf515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The genomes of all organisms encode diverse functional elements, including thousands of genes and essential noncoding regions for gene regulation and genome organization. Systematic perturbation of these elements is crucial to understanding their roles and how their disruption impacts cellular function. Genetic perturbation approaches, which disrupt gene expression or function, provide valuable insights by linking genetic changes to observable phenotypes. However, perturbing individual genomic elements one at a time is impractical. Genetic screens overcome this limitation by enabling the simultaneous perturbation of numerous genomic elements within a single experiment. Traditionally, these screens relied on simple, high-throughput readouts such as cell fitness, differentiation, or one-dimensional fluorescence. However, recent advancements have introduced powerful technologies that combine genetic screens with image-based and single-cell sequencing readouts, allowing researchers to study how perturbations affect complex cellular phenotypes on a genome-wide scale. These innovations, alongside the development of CRISPR-Cas technologies, have significantly enhanced the precision, efficiency, and scalability of genetic screening approaches. In this review, we discuss the genetic screens performed in kinetoplastid parasites to date, emphasizing their application to both coding and noncoding regions of the genome. Furthermore, we explore how integrating image-based and single-cell sequencing technologies with genetic screens holds the potential to deliver unprecedented insights into cellular function and regulatory mechanisms.</p>\",\"PeriodicalId\":19471,\"journal\":{\"name\":\"Nucleic Acids Research\",\"volume\":\"53 11\",\"pages\":\"\"},\"PeriodicalIF\":16.6000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12203798/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nucleic Acids Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/nar/gkaf515\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkaf515","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

所有生物的基因组编码多种功能元件,包括数千个基因和基因调控和基因组组织的基本非编码区。这些元素的系统扰动对于理解它们的作用以及它们的破坏如何影响细胞功能至关重要。遗传扰动方法破坏基因表达或功能,通过将遗传变化与可观察的表型联系起来,提供了有价值的见解。然而,一次干扰一个单独的基因组元素是不切实际的。遗传筛选通过在单个实验中同时干扰许多基因组元素克服了这一限制。传统上,这些筛选依赖于简单、高通量的读数,如细胞适应性、分化或一维荧光。然而,最近的进步已经引入了强大的技术,将遗传筛选与基于图像和单细胞测序读数相结合,使研究人员能够在全基因组范围内研究扰动如何影响复杂的细胞表型。这些创新,加上CRISPR-Cas技术的发展,显著提高了基因筛选方法的精度、效率和可扩展性。在这篇综述中,我们讨论了迄今为止在着丝质体寄生虫中进行的遗传筛选,强调了它们在基因组编码区和非编码区的应用。此外,我们探索了如何将基于图像和单细胞测序技术与遗传筛选相结合,从而为细胞功能和调节机制提供前所未有的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Next generation genetic screens in kinetoplastids.

The genomes of all organisms encode diverse functional elements, including thousands of genes and essential noncoding regions for gene regulation and genome organization. Systematic perturbation of these elements is crucial to understanding their roles and how their disruption impacts cellular function. Genetic perturbation approaches, which disrupt gene expression or function, provide valuable insights by linking genetic changes to observable phenotypes. However, perturbing individual genomic elements one at a time is impractical. Genetic screens overcome this limitation by enabling the simultaneous perturbation of numerous genomic elements within a single experiment. Traditionally, these screens relied on simple, high-throughput readouts such as cell fitness, differentiation, or one-dimensional fluorescence. However, recent advancements have introduced powerful technologies that combine genetic screens with image-based and single-cell sequencing readouts, allowing researchers to study how perturbations affect complex cellular phenotypes on a genome-wide scale. These innovations, alongside the development of CRISPR-Cas technologies, have significantly enhanced the precision, efficiency, and scalability of genetic screening approaches. In this review, we discuss the genetic screens performed in kinetoplastid parasites to date, emphasizing their application to both coding and noncoding regions of the genome. Furthermore, we explore how integrating image-based and single-cell sequencing technologies with genetic screens holds the potential to deliver unprecedented insights into cellular function and regulatory mechanisms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nucleic Acids Research
Nucleic Acids Research 生物-生化与分子生物学
CiteScore
27.10
自引率
4.70%
发文量
1057
审稿时长
2 months
期刊介绍: Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信