在阿尔茨海默病小鼠模型中,BIN1与Tau片段相互作用抑制TrkB信号内体循环

IF 5.9 2区 医学 Q1 NEUROSCIENCES
Yanuo Wei, Ye Xi, Hui Li, Xingxing Zhang, Yu Wang, Yunpeng Li, Ronghao Fang, Jie Xiang, Shengxi Wu
{"title":"在阿尔茨海默病小鼠模型中,BIN1与Tau片段相互作用抑制TrkB信号内体循环","authors":"Yanuo Wei, Ye Xi, Hui Li, Xingxing Zhang, Yu Wang, Yunpeng Li, Ronghao Fang, Jie Xiang, Shengxi Wu","doi":"10.1007/s12264-025-01435-y","DOIUrl":null,"url":null,"abstract":"<p><p>Deficits in BDNF/TrkB receptor signaling lead to increased asparagine endopeptidase activity, which cleaves Tau at the N368 residue to promote Tau hyperphosphorylation and aggregation, thereby contributing to neuronal dysfunction in Alzheimer's disease (AD). However, whether Tau N368 inhibits the BDNF/TrkB signaling pathway remains poorly understood. Previous studies have shown that the internalization of the BDNF/TrkB complex, which leads to signaling endosomes, is necessary for coordinating neuronal survival and synaptic plasticity. Here, we demonstrate that Bridging Integrator 1 (BIN1) interacts with the Tau fragment N368 in P301S and Tau N368-Tg mouse brains, inhibiting BDNF/TrkB signaling by obstructing their early-endosome recycling. Overexpression of BIN1 in the hippocampus of Tau N368-Tg mice partially rescues BDNF/TrkB endosome transport and alleviates pathological and behavioral defects. Our findings suggest that dysfunction of the early-endosome pathway mediated by the Tau N368-BIN1 interaction impairs BDNF signaling, contributing to AD-associated pathological and behavioral dysfunction.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BIN1 Interacts with Tau Fragments to Inhibit TrkB Signaling Endosome Recycling in a Mouse Model of Alzheimer's Disease.\",\"authors\":\"Yanuo Wei, Ye Xi, Hui Li, Xingxing Zhang, Yu Wang, Yunpeng Li, Ronghao Fang, Jie Xiang, Shengxi Wu\",\"doi\":\"10.1007/s12264-025-01435-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Deficits in BDNF/TrkB receptor signaling lead to increased asparagine endopeptidase activity, which cleaves Tau at the N368 residue to promote Tau hyperphosphorylation and aggregation, thereby contributing to neuronal dysfunction in Alzheimer's disease (AD). However, whether Tau N368 inhibits the BDNF/TrkB signaling pathway remains poorly understood. Previous studies have shown that the internalization of the BDNF/TrkB complex, which leads to signaling endosomes, is necessary for coordinating neuronal survival and synaptic plasticity. Here, we demonstrate that Bridging Integrator 1 (BIN1) interacts with the Tau fragment N368 in P301S and Tau N368-Tg mouse brains, inhibiting BDNF/TrkB signaling by obstructing their early-endosome recycling. Overexpression of BIN1 in the hippocampus of Tau N368-Tg mice partially rescues BDNF/TrkB endosome transport and alleviates pathological and behavioral defects. Our findings suggest that dysfunction of the early-endosome pathway mediated by the Tau N368-BIN1 interaction impairs BDNF signaling, contributing to AD-associated pathological and behavioral dysfunction.</p>\",\"PeriodicalId\":19314,\"journal\":{\"name\":\"Neuroscience bulletin\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience bulletin\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12264-025-01435-y\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12264-025-01435-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

BDNF/TrkB受体信号的缺陷导致天冬酰胺内肽酶活性增加,天冬酰胺内肽酶在N368残基处切割Tau蛋白,促进Tau蛋白的过度磷酸化和聚集,从而导致阿尔茨海默病(AD)的神经元功能障碍。然而,Tau N368是否抑制BDNF/TrkB信号通路仍然知之甚少。先前的研究表明,BDNF/TrkB复合物的内化,导致信号内体,是协调神经元存活和突触可塑性所必需的。在这里,我们证明桥接整合子1 (BIN1)与P301S和Tau N368- tg小鼠大脑中的Tau片段N368相互作用,通过阻碍BDNF/TrkB早期内体循环来抑制它们的信号传导。Tau N368-Tg小鼠海马区过表达BIN1可部分恢复BDNF/TrkB内体运输,减轻病理和行为缺陷。我们的研究结果表明,由Tau N368-BIN1相互作用介导的早期内体通路功能障碍会损害BDNF信号,导致ad相关的病理和行为功能障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BIN1 Interacts with Tau Fragments to Inhibit TrkB Signaling Endosome Recycling in a Mouse Model of Alzheimer's Disease.

Deficits in BDNF/TrkB receptor signaling lead to increased asparagine endopeptidase activity, which cleaves Tau at the N368 residue to promote Tau hyperphosphorylation and aggregation, thereby contributing to neuronal dysfunction in Alzheimer's disease (AD). However, whether Tau N368 inhibits the BDNF/TrkB signaling pathway remains poorly understood. Previous studies have shown that the internalization of the BDNF/TrkB complex, which leads to signaling endosomes, is necessary for coordinating neuronal survival and synaptic plasticity. Here, we demonstrate that Bridging Integrator 1 (BIN1) interacts with the Tau fragment N368 in P301S and Tau N368-Tg mouse brains, inhibiting BDNF/TrkB signaling by obstructing their early-endosome recycling. Overexpression of BIN1 in the hippocampus of Tau N368-Tg mice partially rescues BDNF/TrkB endosome transport and alleviates pathological and behavioral defects. Our findings suggest that dysfunction of the early-endosome pathway mediated by the Tau N368-BIN1 interaction impairs BDNF signaling, contributing to AD-associated pathological and behavioral dysfunction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuroscience bulletin
Neuroscience bulletin NEUROSCIENCES-
CiteScore
7.20
自引率
16.10%
发文量
163
审稿时长
6-12 weeks
期刊介绍: Neuroscience Bulletin (NB), the official journal of the Chinese Neuroscience Society, is published monthly by Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Springer. NB aims to publish research advances in the field of neuroscience and promote exchange of scientific ideas within the community. The journal publishes original papers on various topics in neuroscience and focuses on potential disease implications on the nervous system. NB welcomes research contributions on molecular, cellular, or developmental neuroscience using multidisciplinary approaches and functional strategies. We feature full-length original articles, reviews, methods, letters to the editor, insights, and research highlights. As the official journal of the Chinese Neuroscience Society, which currently has more than 12,000 members in China, NB is devoted to facilitating communications between Chinese neuroscientists and their international colleagues. The journal is recognized as the most influential publication in neuroscience research in China.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信