一种制造CMOS后端线兼容固态纳米孔器件的方法。

IF 2.8 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mohamed Yassine Bouhamidi, Chunhui Dai, Michel Stephan, Joyeeta Nag, Justin Kinney, Lei Wan, Matthew Waugh, Kyle Briggs, Jordan Katine, Vincent Tabard-Cossa, Daniel Bedau
{"title":"一种制造CMOS后端线兼容固态纳米孔器件的方法。","authors":"Mohamed Yassine Bouhamidi, Chunhui Dai, Michel Stephan, Joyeeta Nag, Justin Kinney, Lei Wan, Matthew Waugh, Kyle Briggs, Jordan Katine, Vincent Tabard-Cossa, Daniel Bedau","doi":"10.1088/1361-6528/ade5b7","DOIUrl":null,"url":null,"abstract":"<p><p>Solid-state nanopores (ssNPs), nm-sized holes in thin, freestanding membranes, are powerful single-molecule sensors capable of interrogating a wide range of target analytes, from small molecules to large polymers. Interestingly, due to their high spatial resolution, nanopores can also identify tags on long polymers, making them an attractive option as the reading element for molecular information storage strategies. To fully leverage the compact and robust nature of ssNPs, however, they will need to be packaged in a highly parallelized manner with on-chip electronic signal processing capabilities to rapidly and accurately handle the data generated. Additionally, the membrane itself must have specific physical, chemical, and electrical properties to ensure sufficient signal-to-noise ratios are achieved, with the traditional membrane material being SiN<i><sub>x</sub></i>. Unfortunately, the typical method of deposition, low-pressure vapour deposition, requires temperatures beyond the thermal budget of complementary metal-oxide semiconductor back-end-of-line (BEOL) integration processes, limiting the potential to generate an on-chip solution. To this end, we explore various lower-temperature deposition techniques that are BEOL-compatible to generate SiN<i><sub>x</sub></i>membranes for ssNP use, and successfully demonstrate the ability for these alternative methods to generate low-noise nanopores that are capable of performing single-molecule experiments.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A method for fabricating CMOS back-end-of-line-compatible solid-state nanopore devices.\",\"authors\":\"Mohamed Yassine Bouhamidi, Chunhui Dai, Michel Stephan, Joyeeta Nag, Justin Kinney, Lei Wan, Matthew Waugh, Kyle Briggs, Jordan Katine, Vincent Tabard-Cossa, Daniel Bedau\",\"doi\":\"10.1088/1361-6528/ade5b7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Solid-state nanopores (ssNPs), nm-sized holes in thin, freestanding membranes, are powerful single-molecule sensors capable of interrogating a wide range of target analytes, from small molecules to large polymers. Interestingly, due to their high spatial resolution, nanopores can also identify tags on long polymers, making them an attractive option as the reading element for molecular information storage strategies. To fully leverage the compact and robust nature of ssNPs, however, they will need to be packaged in a highly parallelized manner with on-chip electronic signal processing capabilities to rapidly and accurately handle the data generated. Additionally, the membrane itself must have specific physical, chemical, and electrical properties to ensure sufficient signal-to-noise ratios are achieved, with the traditional membrane material being SiN<i><sub>x</sub></i>. Unfortunately, the typical method of deposition, low-pressure vapour deposition, requires temperatures beyond the thermal budget of complementary metal-oxide semiconductor back-end-of-line (BEOL) integration processes, limiting the potential to generate an on-chip solution. To this end, we explore various lower-temperature deposition techniques that are BEOL-compatible to generate SiN<i><sub>x</sub></i>membranes for ssNP use, and successfully demonstrate the ability for these alternative methods to generate low-noise nanopores that are capable of performing single-molecule experiments.</p>\",\"PeriodicalId\":19035,\"journal\":{\"name\":\"Nanotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6528/ade5b7\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ade5b7","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

固态纳米孔,在薄的、独立的膜上的纳米大小的孔,是强大的单分子传感器,能够检测从小分子到大聚合物的各种目标分析物。有趣的是,由于它们的高空间分辨率,纳米孔也可以识别长聚合物上的标签,使它们成为分子信息存储策略的一个有吸引力的选择。然而,为了充分利用固态纳米孔的紧凑和坚固性,它们需要以高度并行的方式封装,并具有片上电子信号处理能力,以快速准确地处理生成的数据。此外,膜本身必须具有特定的物理、化学和电性能,以确保达到足够的信噪比,传统的膜材料是SiNX。不幸的是,典型的沉积方法,低压气相沉积,需要的温度超过CMOS后端集成工艺的热预算,限制了生成片上解决方案的潜力。为此,我们探索了各种与beol兼容的低温沉积技术,以生成用于固态纳米孔的SiNx膜,并成功地证明了这些替代方法能够生成能够进行单分子实验的低噪声纳米孔。 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A method for fabricating CMOS back-end-of-line-compatible solid-state nanopore devices.

Solid-state nanopores (ssNPs), nm-sized holes in thin, freestanding membranes, are powerful single-molecule sensors capable of interrogating a wide range of target analytes, from small molecules to large polymers. Interestingly, due to their high spatial resolution, nanopores can also identify tags on long polymers, making them an attractive option as the reading element for molecular information storage strategies. To fully leverage the compact and robust nature of ssNPs, however, they will need to be packaged in a highly parallelized manner with on-chip electronic signal processing capabilities to rapidly and accurately handle the data generated. Additionally, the membrane itself must have specific physical, chemical, and electrical properties to ensure sufficient signal-to-noise ratios are achieved, with the traditional membrane material being SiNx. Unfortunately, the typical method of deposition, low-pressure vapour deposition, requires temperatures beyond the thermal budget of complementary metal-oxide semiconductor back-end-of-line (BEOL) integration processes, limiting the potential to generate an on-chip solution. To this end, we explore various lower-temperature deposition techniques that are BEOL-compatible to generate SiNxmembranes for ssNP use, and successfully demonstrate the ability for these alternative methods to generate low-noise nanopores that are capable of performing single-molecule experiments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanotechnology
Nanotechnology 工程技术-材料科学:综合
CiteScore
7.10
自引率
5.70%
发文量
820
审稿时长
2.5 months
期刊介绍: The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信