Xiaoqing Wang, Hongli Fan, Zhengguo Tan, Serge Vasylechko, Edward Yang, Ryne Didier, Onur Afacan, Martin Uecker, Simon K Warfield, Ali Gholipour
求助PDF
{"title":"使用多回声径向FLASH和基于模型的重建快速,高分辨率和无失真的胎儿大脑r2 *映射。","authors":"Xiaoqing Wang, Hongli Fan, Zhengguo Tan, Serge Vasylechko, Edward Yang, Ryne Didier, Onur Afacan, Martin Uecker, Simon K Warfield, Ali Gholipour","doi":"10.1002/mrm.30604","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To develop a rapid, high-resolution, and distortion-free technique for simultaneous water-fat separation, <math> <semantics> <mrow> <msubsup><mrow><mi>R</mi></mrow> <mrow><mn>2</mn></mrow> <mrow><mo>∗</mo></mrow> </msubsup> </mrow> <annotation>$$ {R}_2^{\\ast } $$</annotation></semantics> </math> and <math> <semantics> <mrow> <msub><mrow><mi>B</mi></mrow> <mrow><mn>0</mn></mrow> </msub> </mrow> <annotation>$$ {B}_0 $$</annotation></semantics> </math> mapping of the fetal brain at 3 T.</p><p><strong>Methods: </strong>A 2D multi-echo radial FLASH sequence with blip gradients is adapted for data acquisition during maternal free breathing. A calibrationless model-based reconstruction with sparsity constraints is developed to jointly estimate water, fat, <math> <semantics> <mrow> <msubsup><mrow><mi>R</mi></mrow> <mrow><mn>2</mn></mrow> <mrow><mo>∗</mo></mrow> </msubsup> </mrow> <annotation>$$ {R}_2^{\\ast } $$</annotation></semantics> </math> and <math> <semantics> <mrow> <msub><mrow><mi>B</mi></mrow> <mrow><mn>0</mn></mrow> </msub> </mrow> <annotation>$$ {B}_0 $$</annotation></semantics> </math> field maps directly from k-space. This approach was validated and compared to reference methods using numerical and NIST phantoms and data from nine fetuses between 26 and 36 weeks of gestation age.</p><p><strong>Results: </strong>Both numerical and experimental phantom studies confirm good accuracy and precision. In fetal studies, model-based reconstruction yields quantitative <math> <semantics> <mrow> <msubsup><mrow><mi>R</mi></mrow> <mrow><mn>2</mn></mrow> <mrow><mo>∗</mo></mrow> </msubsup> </mrow> <annotation>$$ {R}_2^{\\ast } $$</annotation></semantics> </math> values in close agreement with those from a parallel imaging compressed sensing (PICS) technique using Graph Cut (intra-class correlation coefficient [ICC] = 0.9601), while providing enhanced image detail. Repeated scans confirm good reproducibility (ICC = 0.9213). Compared to multi-echo EPI, the proposed radial technique produces higher-resolution (1.1 <math> <semantics><mrow><mo>×</mo></mrow> <annotation>$$ \\times $$</annotation></semantics> </math> 1.1 <math> <semantics><mrow><mo>×</mo></mrow> <annotation>$$ \\times $$</annotation></semantics> </math> 3 mm <math> <semantics> <mrow> <msup><mrow><mo> </mo></mrow> <mrow><mn>3</mn></mrow> </msup> </mrow> <annotation>$$ {}^3 $$</annotation></semantics> </math> vs. 2-3 <math> <semantics><mrow><mo>×</mo></mrow> <annotation>$$ \\times $$</annotation></semantics> </math> 2-3 <math> <semantics><mrow><mo>×</mo></mrow> <annotation>$$ \\times $$</annotation></semantics> </math> 3 mm <math> <semantics> <mrow> <msup><mrow><mo> </mo></mrow> <mrow><mn>3</mn></mrow> </msup> </mrow> <annotation>$$ {}^3 $$</annotation></semantics> </math> ) <math> <semantics> <mrow> <msubsup><mrow><mi>R</mi></mrow> <mrow><mn>2</mn></mrow> <mrow><mo>∗</mo></mrow> </msubsup> </mrow> <annotation>$$ {R}_2^{\\ast } $$</annotation></semantics> </math> maps with reduced distortion. Despite differences in motion, resolution, and distortion, <math> <semantics> <mrow> <msubsup><mrow><mi>R</mi></mrow> <mrow><mn>2</mn></mrow> <mrow><mo>∗</mo></mrow> </msubsup> </mrow> <annotation>$$ {R}_2^{\\ast } $$</annotation></semantics> </math> values are comparable between the two acquisition strategies (ICC = 0.8049). Additionally, the proposed approach enables the synthesis of high-resolution and distortion-free <math> <semantics> <mrow> <msubsup><mrow><mi>R</mi></mrow> <mrow><mn>2</mn></mrow> <mrow><mo>∗</mo></mrow> </msubsup> </mrow> <annotation>$$ {R}_2^{\\ast } $$</annotation></semantics> </math> -weighted images.</p><p><strong>Conclusion: </strong>This study demonstrates the feasibility of using multi-echo radial FLASH combined with calibrationless model-based reconstruction for motion-robust, distortion-free <math> <semantics> <mrow> <msubsup><mrow><mi>R</mi></mrow> <mrow><mn>2</mn></mrow> <mrow><mo>∗</mo></mrow> </msubsup> </mrow> <annotation>$$ {R}_2^{\\ast } $$</annotation></semantics> </math> mapping of the fetal brain at 3T, achieving a nominal resolution of <math> <semantics><mrow><mn>1</mn> <mo>.</mo> <mn>1</mn> <mo>×</mo> <mn>1</mn> <mo>.</mo> <mn>1</mn> <mo>×</mo> <mn>3</mn></mrow> <annotation>$$ 1.1\\times 1.1\\times 3 $$</annotation></semantics> </math> mm <math> <semantics> <mrow> <msup><mrow><mo> </mo></mrow> <mrow><mn>3</mn></mrow> </msup> </mrow> <annotation>$$ {}^3 $$</annotation></semantics> </math> within 2 s per slice.</p>","PeriodicalId":18065,"journal":{"name":"Magnetic Resonance in Medicine","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"<ArticleTitle xmlns:ns0=\\\"http://www.w3.org/1998/Math/MathML\\\">Rapid, high-resolution and distortion-free <ns0:math> <ns0:mrow> <ns0:msubsup><ns0:mrow><ns0:mi>R</ns0:mi></ns0:mrow> <ns0:mrow><ns0:mn>2</ns0:mn></ns0:mrow> <ns0:mrow><ns0:mo>∗</ns0:mo></ns0:mrow> </ns0:msubsup> </ns0:mrow> </ns0:math> mapping of fetal brain using multi-echo radial FLASH and model-based reconstruction.\",\"authors\":\"Xiaoqing Wang, Hongli Fan, Zhengguo Tan, Serge Vasylechko, Edward Yang, Ryne Didier, Onur Afacan, Martin Uecker, Simon K Warfield, Ali Gholipour\",\"doi\":\"10.1002/mrm.30604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To develop a rapid, high-resolution, and distortion-free technique for simultaneous water-fat separation, <math> <semantics> <mrow> <msubsup><mrow><mi>R</mi></mrow> <mrow><mn>2</mn></mrow> <mrow><mo>∗</mo></mrow> </msubsup> </mrow> <annotation>$$ {R}_2^{\\\\ast } $$</annotation></semantics> </math> and <math> <semantics> <mrow> <msub><mrow><mi>B</mi></mrow> <mrow><mn>0</mn></mrow> </msub> </mrow> <annotation>$$ {B}_0 $$</annotation></semantics> </math> mapping of the fetal brain at 3 T.</p><p><strong>Methods: </strong>A 2D multi-echo radial FLASH sequence with blip gradients is adapted for data acquisition during maternal free breathing. A calibrationless model-based reconstruction with sparsity constraints is developed to jointly estimate water, fat, <math> <semantics> <mrow> <msubsup><mrow><mi>R</mi></mrow> <mrow><mn>2</mn></mrow> <mrow><mo>∗</mo></mrow> </msubsup> </mrow> <annotation>$$ {R}_2^{\\\\ast } $$</annotation></semantics> </math> and <math> <semantics> <mrow> <msub><mrow><mi>B</mi></mrow> <mrow><mn>0</mn></mrow> </msub> </mrow> <annotation>$$ {B}_0 $$</annotation></semantics> </math> field maps directly from k-space. This approach was validated and compared to reference methods using numerical and NIST phantoms and data from nine fetuses between 26 and 36 weeks of gestation age.</p><p><strong>Results: </strong>Both numerical and experimental phantom studies confirm good accuracy and precision. In fetal studies, model-based reconstruction yields quantitative <math> <semantics> <mrow> <msubsup><mrow><mi>R</mi></mrow> <mrow><mn>2</mn></mrow> <mrow><mo>∗</mo></mrow> </msubsup> </mrow> <annotation>$$ {R}_2^{\\\\ast } $$</annotation></semantics> </math> values in close agreement with those from a parallel imaging compressed sensing (PICS) technique using Graph Cut (intra-class correlation coefficient [ICC] = 0.9601), while providing enhanced image detail. Repeated scans confirm good reproducibility (ICC = 0.9213). Compared to multi-echo EPI, the proposed radial technique produces higher-resolution (1.1 <math> <semantics><mrow><mo>×</mo></mrow> <annotation>$$ \\\\times $$</annotation></semantics> </math> 1.1 <math> <semantics><mrow><mo>×</mo></mrow> <annotation>$$ \\\\times $$</annotation></semantics> </math> 3 mm <math> <semantics> <mrow> <msup><mrow><mo> </mo></mrow> <mrow><mn>3</mn></mrow> </msup> </mrow> <annotation>$$ {}^3 $$</annotation></semantics> </math> vs. 2-3 <math> <semantics><mrow><mo>×</mo></mrow> <annotation>$$ \\\\times $$</annotation></semantics> </math> 2-3 <math> <semantics><mrow><mo>×</mo></mrow> <annotation>$$ \\\\times $$</annotation></semantics> </math> 3 mm <math> <semantics> <mrow> <msup><mrow><mo> </mo></mrow> <mrow><mn>3</mn></mrow> </msup> </mrow> <annotation>$$ {}^3 $$</annotation></semantics> </math> ) <math> <semantics> <mrow> <msubsup><mrow><mi>R</mi></mrow> <mrow><mn>2</mn></mrow> <mrow><mo>∗</mo></mrow> </msubsup> </mrow> <annotation>$$ {R}_2^{\\\\ast } $$</annotation></semantics> </math> maps with reduced distortion. Despite differences in motion, resolution, and distortion, <math> <semantics> <mrow> <msubsup><mrow><mi>R</mi></mrow> <mrow><mn>2</mn></mrow> <mrow><mo>∗</mo></mrow> </msubsup> </mrow> <annotation>$$ {R}_2^{\\\\ast } $$</annotation></semantics> </math> values are comparable between the two acquisition strategies (ICC = 0.8049). Additionally, the proposed approach enables the synthesis of high-resolution and distortion-free <math> <semantics> <mrow> <msubsup><mrow><mi>R</mi></mrow> <mrow><mn>2</mn></mrow> <mrow><mo>∗</mo></mrow> </msubsup> </mrow> <annotation>$$ {R}_2^{\\\\ast } $$</annotation></semantics> </math> -weighted images.</p><p><strong>Conclusion: </strong>This study demonstrates the feasibility of using multi-echo radial FLASH combined with calibrationless model-based reconstruction for motion-robust, distortion-free <math> <semantics> <mrow> <msubsup><mrow><mi>R</mi></mrow> <mrow><mn>2</mn></mrow> <mrow><mo>∗</mo></mrow> </msubsup> </mrow> <annotation>$$ {R}_2^{\\\\ast } $$</annotation></semantics> </math> mapping of the fetal brain at 3T, achieving a nominal resolution of <math> <semantics><mrow><mn>1</mn> <mo>.</mo> <mn>1</mn> <mo>×</mo> <mn>1</mn> <mo>.</mo> <mn>1</mn> <mo>×</mo> <mn>3</mn></mrow> <annotation>$$ 1.1\\\\times 1.1\\\\times 3 $$</annotation></semantics> </math> mm <math> <semantics> <mrow> <msup><mrow><mo> </mo></mrow> <mrow><mn>3</mn></mrow> </msup> </mrow> <annotation>$$ {}^3 $$</annotation></semantics> </math> within 2 s per slice.</p>\",\"PeriodicalId\":18065,\"journal\":{\"name\":\"Magnetic Resonance in Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic Resonance in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/mrm.30604\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mrm.30604","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
引用
批量引用