{"title":"甜菜碱通过上调内皮一氧化氮合酶/一氧化氮信号通路,保护大脑微血管内皮,改善高血压诱导的认知功能障碍。","authors":"Jiale Sun, Wenjuan Zhang, Xueying Wang, Xiaomin Zhao, Shan Gao","doi":"10.1097/HJH.0000000000004085","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Hypertension-induced endothelial damage in cerebral microvessels is a key factor contributing to vascular cognitive impairment (VCI). Endothelial function stabilization considerably depends on the endothelial nitric oxide synthase (eNOS)/nitrogen monoxide (NO) pathway. Furthermore, the eNOS/NO signaling pathway plays a role in stabilizing the vascular endothelium. Although betaine (bet) has been shown to improve cognitive dysfunction, its underlying mechanisms remain unclear. Therefore, this study aimed to determine whether betaine protects cognitive function by regulating eNOS/NO activity.</p><p><strong>Methods: </strong>Male 7-month-old spontaneously hypertensive rats (SHR) were randomly assigned to four groups: SHR, Bet, Bet and N(G)-Nitroarginine methyl ester hydrochloride (L-NAME), and L-NAME groups. Male 7-month-old Wistar Kyoto rats (WKY) served as controls. All animals received treatment or saline for 4 weeks. In-vitro experiments were conducted using rat brain microvascular endothelial cells (RBMECs) treated with either homocysteine (Hcy) or betaine. Behavioral experiments, western blotting, pathological tissue staining, Doppler ultrasound technique, and ELISA were employed to assess the impact of hypertension on cognitive and endothelial functions.</p><p><strong>Results: </strong>Hypertension led to cognitive decline in SHR by causing endothelial dysfunction, blood-brain barrier disruption, inflammation, oxidative stress, and apoptosis. Bet administration significantly improved these pathological indicators of cognitive impairment; however, the eNOS inhibitor L-NAME reversed its effects.</p><p><strong>Conclusion: </strong>Our findings suggest that betaine protects vascular endothelium and improves VCI by modulating the eNOS/NO signaling pathway.</p>","PeriodicalId":16043,"journal":{"name":"Journal of Hypertension","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Betaine protects cerebral microvascular endothelium and ameliorates hypertension-induced cognitive dysfunction via upregulation of the endothelial nitric oxide synthase/nitric monoxide signaling pathway.\",\"authors\":\"Jiale Sun, Wenjuan Zhang, Xueying Wang, Xiaomin Zhao, Shan Gao\",\"doi\":\"10.1097/HJH.0000000000004085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Hypertension-induced endothelial damage in cerebral microvessels is a key factor contributing to vascular cognitive impairment (VCI). Endothelial function stabilization considerably depends on the endothelial nitric oxide synthase (eNOS)/nitrogen monoxide (NO) pathway. Furthermore, the eNOS/NO signaling pathway plays a role in stabilizing the vascular endothelium. Although betaine (bet) has been shown to improve cognitive dysfunction, its underlying mechanisms remain unclear. Therefore, this study aimed to determine whether betaine protects cognitive function by regulating eNOS/NO activity.</p><p><strong>Methods: </strong>Male 7-month-old spontaneously hypertensive rats (SHR) were randomly assigned to four groups: SHR, Bet, Bet and N(G)-Nitroarginine methyl ester hydrochloride (L-NAME), and L-NAME groups. Male 7-month-old Wistar Kyoto rats (WKY) served as controls. All animals received treatment or saline for 4 weeks. In-vitro experiments were conducted using rat brain microvascular endothelial cells (RBMECs) treated with either homocysteine (Hcy) or betaine. Behavioral experiments, western blotting, pathological tissue staining, Doppler ultrasound technique, and ELISA were employed to assess the impact of hypertension on cognitive and endothelial functions.</p><p><strong>Results: </strong>Hypertension led to cognitive decline in SHR by causing endothelial dysfunction, blood-brain barrier disruption, inflammation, oxidative stress, and apoptosis. Bet administration significantly improved these pathological indicators of cognitive impairment; however, the eNOS inhibitor L-NAME reversed its effects.</p><p><strong>Conclusion: </strong>Our findings suggest that betaine protects vascular endothelium and improves VCI by modulating the eNOS/NO signaling pathway.</p>\",\"PeriodicalId\":16043,\"journal\":{\"name\":\"Journal of Hypertension\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hypertension\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/HJH.0000000000004085\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PERIPHERAL VASCULAR DISEASE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hypertension","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/HJH.0000000000004085","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
Betaine protects cerebral microvascular endothelium and ameliorates hypertension-induced cognitive dysfunction via upregulation of the endothelial nitric oxide synthase/nitric monoxide signaling pathway.
Objectives: Hypertension-induced endothelial damage in cerebral microvessels is a key factor contributing to vascular cognitive impairment (VCI). Endothelial function stabilization considerably depends on the endothelial nitric oxide synthase (eNOS)/nitrogen monoxide (NO) pathway. Furthermore, the eNOS/NO signaling pathway plays a role in stabilizing the vascular endothelium. Although betaine (bet) has been shown to improve cognitive dysfunction, its underlying mechanisms remain unclear. Therefore, this study aimed to determine whether betaine protects cognitive function by regulating eNOS/NO activity.
Methods: Male 7-month-old spontaneously hypertensive rats (SHR) were randomly assigned to four groups: SHR, Bet, Bet and N(G)-Nitroarginine methyl ester hydrochloride (L-NAME), and L-NAME groups. Male 7-month-old Wistar Kyoto rats (WKY) served as controls. All animals received treatment or saline for 4 weeks. In-vitro experiments were conducted using rat brain microvascular endothelial cells (RBMECs) treated with either homocysteine (Hcy) or betaine. Behavioral experiments, western blotting, pathological tissue staining, Doppler ultrasound technique, and ELISA were employed to assess the impact of hypertension on cognitive and endothelial functions.
Results: Hypertension led to cognitive decline in SHR by causing endothelial dysfunction, blood-brain barrier disruption, inflammation, oxidative stress, and apoptosis. Bet administration significantly improved these pathological indicators of cognitive impairment; however, the eNOS inhibitor L-NAME reversed its effects.
Conclusion: Our findings suggest that betaine protects vascular endothelium and improves VCI by modulating the eNOS/NO signaling pathway.
期刊介绍:
The Journal of Hypertension publishes papers reporting original clinical and experimental research which are of a high standard and which contribute to the advancement of knowledge in the field of hypertension. The Journal publishes full papers, reviews or editorials (normally by invitation), and correspondence.