在噬菌体展示肽文库的选择中分离非特异性结合物的来源。

IF 4 2区 生物学 Q2 MICROBIOLOGY
Frontiers in Microbiology Pub Date : 2025-06-04 eCollection Date: 2025-01-01 DOI:10.3389/fmicb.2025.1571679
Babak Bakhshinejad, Andreas Kjaer
{"title":"在噬菌体展示肽文库的选择中分离非特异性结合物的来源。","authors":"Babak Bakhshinejad, Andreas Kjaer","doi":"10.3389/fmicb.2025.1571679","DOIUrl":null,"url":null,"abstract":"<p><p>Over the recent decades, phage display has been used successfully to identify a variety of peptides with diagnostic and therapeutic applications. Despite the significant role of this technology in the pharmaceutical industry, the affinity selection of phage display peptide libraries through biopanning suffers from some limitations. The most significant drawback of phage display is the undesirable enrichment and isolation of phages whose displayed peptides have no binding affinity toward the target. Phages with high amplification rates constitute the most important category of non-specific binders. Amplification, which aims to increase the copy number of phages displaying target-specific peptides, acts like a double-edged blade and can also make a major contribution to the target-unrelated enrichment of non-specific binders, leading to compositional bias in the sequence content of the biopanning output. The cutting-edge breakthroughs fueled by the integration of next-generation sequencing (NGS) into phage display have led researchers to gain a deeper understanding of the information content of the phage population recovered from biopanning and how its peptide content changes during further rounds of selection and amplification. This body of vastly increasing information has shed more light on the complications encountered during library selection and opened new perspectives to obtain in-depth insights into amplification-associated bias in the selected phage display libraries, analyze biopanning data more rigorously, and devise more optimal protocols for phage display selections. This knowledge can finally provide a solid foundation for discovering promising target-specific binders in the evolutionary selection of phage display libraries.</p>","PeriodicalId":12466,"journal":{"name":"Frontiers in Microbiology","volume":"16 ","pages":"1571679"},"PeriodicalIF":4.0000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12174986/pdf/","citationCount":"0","resultStr":"{\"title\":\"On the origin of non-specific binders isolated in the selection of phage display peptide libraries.\",\"authors\":\"Babak Bakhshinejad, Andreas Kjaer\",\"doi\":\"10.3389/fmicb.2025.1571679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Over the recent decades, phage display has been used successfully to identify a variety of peptides with diagnostic and therapeutic applications. Despite the significant role of this technology in the pharmaceutical industry, the affinity selection of phage display peptide libraries through biopanning suffers from some limitations. The most significant drawback of phage display is the undesirable enrichment and isolation of phages whose displayed peptides have no binding affinity toward the target. Phages with high amplification rates constitute the most important category of non-specific binders. Amplification, which aims to increase the copy number of phages displaying target-specific peptides, acts like a double-edged blade and can also make a major contribution to the target-unrelated enrichment of non-specific binders, leading to compositional bias in the sequence content of the biopanning output. The cutting-edge breakthroughs fueled by the integration of next-generation sequencing (NGS) into phage display have led researchers to gain a deeper understanding of the information content of the phage population recovered from biopanning and how its peptide content changes during further rounds of selection and amplification. This body of vastly increasing information has shed more light on the complications encountered during library selection and opened new perspectives to obtain in-depth insights into amplification-associated bias in the selected phage display libraries, analyze biopanning data more rigorously, and devise more optimal protocols for phage display selections. This knowledge can finally provide a solid foundation for discovering promising target-specific binders in the evolutionary selection of phage display libraries.</p>\",\"PeriodicalId\":12466,\"journal\":{\"name\":\"Frontiers in Microbiology\",\"volume\":\"16 \",\"pages\":\"1571679\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12174986/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3389/fmicb.2025.1571679\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmicb.2025.1571679","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

近几十年来,噬菌体展示已经成功地用于鉴定各种多肽的诊断和治疗应用。尽管该技术在制药工业中发挥着重要作用,但通过生物筛选对噬菌体展示肽库进行亲和力选择仍存在一定的局限性。噬菌体展示的最大缺点是所展示的多肽对目标物没有结合亲和力的噬菌体的富集和分离是不可取的。具有高扩增率的噬菌体是非特异性结合物中最重要的一类。扩增旨在增加显示目标特异性肽的噬菌体的拷贝数,其作用就像一把双刃剑,也可能对非特异性结合物的目标无关富集做出重大贡献,导致生物筛选输出的序列内容的组成偏倚。将下一代测序(NGS)整合到噬菌体展示中所带来的前沿突破,使研究人员能够更深入地了解从生物筛选中恢复的噬菌体群体的信息含量,以及其肽含量在进一步的选择和扩增过程中如何变化。大量增加的信息揭示了文库选择过程中遇到的复杂性,并开辟了新的视角,以深入了解所选噬菌体展示文库中的扩增相关偏差,更严格地分析生物筛选数据,并设计出更优化的噬菌体展示选择方案。这些知识最终可以为在噬菌体展示库的进化选择中发现有希望的靶向特异性结合物提供坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the origin of non-specific binders isolated in the selection of phage display peptide libraries.

Over the recent decades, phage display has been used successfully to identify a variety of peptides with diagnostic and therapeutic applications. Despite the significant role of this technology in the pharmaceutical industry, the affinity selection of phage display peptide libraries through biopanning suffers from some limitations. The most significant drawback of phage display is the undesirable enrichment and isolation of phages whose displayed peptides have no binding affinity toward the target. Phages with high amplification rates constitute the most important category of non-specific binders. Amplification, which aims to increase the copy number of phages displaying target-specific peptides, acts like a double-edged blade and can also make a major contribution to the target-unrelated enrichment of non-specific binders, leading to compositional bias in the sequence content of the biopanning output. The cutting-edge breakthroughs fueled by the integration of next-generation sequencing (NGS) into phage display have led researchers to gain a deeper understanding of the information content of the phage population recovered from biopanning and how its peptide content changes during further rounds of selection and amplification. This body of vastly increasing information has shed more light on the complications encountered during library selection and opened new perspectives to obtain in-depth insights into amplification-associated bias in the selected phage display libraries, analyze biopanning data more rigorously, and devise more optimal protocols for phage display selections. This knowledge can finally provide a solid foundation for discovering promising target-specific binders in the evolutionary selection of phage display libraries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.70
自引率
9.60%
发文量
4837
审稿时长
14 weeks
期刊介绍: Frontiers in Microbiology is a leading journal in its field, publishing rigorously peer-reviewed research across the entire spectrum of microbiology. Field Chief Editor Martin G. Klotz at Washington State University is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信