基于书写过程数字生物标志物的社区早期阿尔茨海默病人群智能筛查新方法

IF 2.1 4区 医学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Frontiers in Computational Neuroscience Pub Date : 2025-06-04 eCollection Date: 2025-01-01 DOI:10.3389/fncom.2025.1564932
Shuwu Li, Kai Li, Jiakang Liu, Shouqiang Huang, Chen Wang, Yuting Tu, Bo Wang, Pengpeng Zhang, Yuntian Luo, Yanli Zhang, Tong Chen
{"title":"基于书写过程数字生物标志物的社区早期阿尔茨海默病人群智能筛查新方法","authors":"Shuwu Li, Kai Li, Jiakang Liu, Shouqiang Huang, Chen Wang, Yuting Tu, Bo Wang, Pengpeng Zhang, Yuntian Luo, Yanli Zhang, Tong Chen","doi":"10.3389/fncom.2025.1564932","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In response to the shortcomings of the current Alzheimer's disease (AD) early populations assessment, which is based on neuropsychological scales with high subjectivity, low accuracy of repeated measurements, tedious process and dependence on physicians, it was found that digital biomarkers based on the writing process can effectively characterize the cognitive deficits of patients with mild cognitive impairment (MCI) due to AD.</p><p><strong>Methods: </strong>This study designed a digital writing assessment paradigm, extracted dynamic handwriting and image data during the paradigm assessment process, and analyzed digital biomarkers of the writing process to assess subjects' cognitive functions. A total of 72 subjects, including 34 health controls (HC) and 38 MCI due to AD, were enrolled in this study.</p><p><strong>Results: </strong>Their combined screening efficacy of digital biomarkers based on the MCI writing process due to AD populations having an area under curve (AUC) of 0.918, and a confidence interval (CI) of 0.854-0.982, was higher than the Montreal Cognitive Assessment Scale (AUC = 0.859, CI = 0.772-0.947) and the Mini-mental State Examination Scale (AUC = 0.783, CI = 0.678-0.888).</p><p><strong>Conclusion: </strong>Therefore, digital biomarkers based on the writing process can characterize and quantify the cognitive function of MCI due to AD populations at a fine-grained level, which is expected to be a new method for intelligent screening and early warning of early AD populations in a community-based physician-free setting.</p>","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"19 ","pages":"1564932"},"PeriodicalIF":2.1000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12174119/pdf/","citationCount":"0","resultStr":"{\"title\":\"A new method for community-based intelligent screening of early Alzheimer's disease populations based on digital biomarkers of the writing process.\",\"authors\":\"Shuwu Li, Kai Li, Jiakang Liu, Shouqiang Huang, Chen Wang, Yuting Tu, Bo Wang, Pengpeng Zhang, Yuntian Luo, Yanli Zhang, Tong Chen\",\"doi\":\"10.3389/fncom.2025.1564932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>In response to the shortcomings of the current Alzheimer's disease (AD) early populations assessment, which is based on neuropsychological scales with high subjectivity, low accuracy of repeated measurements, tedious process and dependence on physicians, it was found that digital biomarkers based on the writing process can effectively characterize the cognitive deficits of patients with mild cognitive impairment (MCI) due to AD.</p><p><strong>Methods: </strong>This study designed a digital writing assessment paradigm, extracted dynamic handwriting and image data during the paradigm assessment process, and analyzed digital biomarkers of the writing process to assess subjects' cognitive functions. A total of 72 subjects, including 34 health controls (HC) and 38 MCI due to AD, were enrolled in this study.</p><p><strong>Results: </strong>Their combined screening efficacy of digital biomarkers based on the MCI writing process due to AD populations having an area under curve (AUC) of 0.918, and a confidence interval (CI) of 0.854-0.982, was higher than the Montreal Cognitive Assessment Scale (AUC = 0.859, CI = 0.772-0.947) and the Mini-mental State Examination Scale (AUC = 0.783, CI = 0.678-0.888).</p><p><strong>Conclusion: </strong>Therefore, digital biomarkers based on the writing process can characterize and quantify the cognitive function of MCI due to AD populations at a fine-grained level, which is expected to be a new method for intelligent screening and early warning of early AD populations in a community-based physician-free setting.</p>\",\"PeriodicalId\":12363,\"journal\":{\"name\":\"Frontiers in Computational Neuroscience\",\"volume\":\"19 \",\"pages\":\"1564932\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12174119/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Computational Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fncom.2025.1564932\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncom.2025.1564932","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:针对目前阿尔茨海默病(AD)早期人群评估基于神经心理学量表主观性高、重复测量准确性低、过程繁琐、依赖医生的缺点,发现基于书写过程的数字生物标志物可以有效表征AD轻度认知障碍(MCI)患者的认知缺陷。方法:设计数字书写评估范式,提取范式评估过程中的动态手写和图像数据,分析书写过程中的数字生物标志物,评估被试的认知功能。本研究共纳入72名受试者,包括34名健康对照(HC)和38名因AD引起的MCI。结果:基于MCI书写过程的AD人群数字生物标志物的综合筛选效果曲线下面积(AUC)为0.918,置信区间(CI)为0.854-0.982,高于蒙特利尔认知评估量表(AUC = 0.859,CI = 0.772-0.947)和迷你精神状态检查量表(AUC = 0.783,CI = 0.678-0.888)。结论:因此,基于书写过程的数字生物标志物可以在细粒度水平上表征和量化AD人群导致的MCI认知功能,有望成为社区无医生环境下早期AD人群智能筛查和预警的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new method for community-based intelligent screening of early Alzheimer's disease populations based on digital biomarkers of the writing process.

Background: In response to the shortcomings of the current Alzheimer's disease (AD) early populations assessment, which is based on neuropsychological scales with high subjectivity, low accuracy of repeated measurements, tedious process and dependence on physicians, it was found that digital biomarkers based on the writing process can effectively characterize the cognitive deficits of patients with mild cognitive impairment (MCI) due to AD.

Methods: This study designed a digital writing assessment paradigm, extracted dynamic handwriting and image data during the paradigm assessment process, and analyzed digital biomarkers of the writing process to assess subjects' cognitive functions. A total of 72 subjects, including 34 health controls (HC) and 38 MCI due to AD, were enrolled in this study.

Results: Their combined screening efficacy of digital biomarkers based on the MCI writing process due to AD populations having an area under curve (AUC) of 0.918, and a confidence interval (CI) of 0.854-0.982, was higher than the Montreal Cognitive Assessment Scale (AUC = 0.859, CI = 0.772-0.947) and the Mini-mental State Examination Scale (AUC = 0.783, CI = 0.678-0.888).

Conclusion: Therefore, digital biomarkers based on the writing process can characterize and quantify the cognitive function of MCI due to AD populations at a fine-grained level, which is expected to be a new method for intelligent screening and early warning of early AD populations in a community-based physician-free setting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Computational Neuroscience
Frontiers in Computational Neuroscience MATHEMATICAL & COMPUTATIONAL BIOLOGY-NEUROSCIENCES
CiteScore
5.30
自引率
3.10%
发文量
166
审稿时长
6-12 weeks
期刊介绍: Frontiers in Computational Neuroscience is a first-tier electronic journal devoted to promoting theoretical modeling of brain function and fostering interdisciplinary interactions between theoretical and experimental neuroscience. Progress in understanding the amazing capabilities of the brain is still limited, and we believe that it will only come with deep theoretical thinking and mutually stimulating cooperation between different disciplines and approaches. We therefore invite original contributions on a wide range of topics that present the fruits of such cooperation, or provide stimuli for future alliances. We aim to provide an interactive forum for cutting-edge theoretical studies of the nervous system, and for promulgating the best theoretical research to the broader neuroscience community. Models of all styles and at all levels are welcome, from biophysically motivated realistic simulations of neurons and synapses to high-level abstract models of inference and decision making. While the journal is primarily focused on theoretically based and driven research, we welcome experimental studies that validate and test theoretical conclusions. Also: comp neuro
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信