Belladini Lovely, Hasna Amalia Fauziyyah, Shendy Krisdayanti, Muhamad Zakky Irsyada, Lisna Efiyanti, Wara Dyah Pita Rengga, Novitri Hastuti, R A Ilyas, Mohd Nor Faiz Norrrahim, Victor Feizal Knight
{"title":"用氧化锌和n-甲基吡咯烷酮增强油棕渣基醋酸纤维素膜处理蜡染废水。","authors":"Belladini Lovely, Hasna Amalia Fauziyyah, Shendy Krisdayanti, Muhamad Zakky Irsyada, Lisna Efiyanti, Wara Dyah Pita Rengga, Novitri Hastuti, R A Ilyas, Mohd Nor Faiz Norrrahim, Victor Feizal Knight","doi":"10.1186/s40643-025-00880-x","DOIUrl":null,"url":null,"abstract":"<p><p>As the world's top producers of oil palm (Elaeis guineensis), Indonesia and Malaysia are urged to propose a value-added valorization of its lignocellulosic biomass, oil palm empty fruit bunches (OPEFB). Meanwhile, the nations' signature 'batik' textile industries are in dire need of optimum remediation treatments of their wastewater high in harmful dyes and chemicals. Organic-inorganic hybrid systems of mixed matrix membranes (MMMs) for heavy metals removal were prepared using OPEFB-based cellulose acetate (CA) and zinc oxide (ZnO; 0.5, 0.75, 1%, w/v) in N-methyl pyrrolidinone (NMP; 89, 90, 91%, v/v). The high crystallinity (62.42%) and fibrils' web-like structure of OPEFB-CA were confirmed. Microscopic observation of OPEFB CA-NMP-ZnO membranes evidenced the porous yet smooth surface due to the use of plasticizing NMP, as well as uniform dispersion of ZnO particles. MMM 2 (0.75%ZnO; 90%NMP) was the best-performing membrane mechanically with excellent tensile strength (1.78 MPa), Young's modulus (0.13 GPa), and elongation-at-break (2.59%), while thermal stability (T<sub>d,5%</sub>, 291 °C) improvement was also highlighted. Pores characteristics on size, volume, and surface area were discussed, too. Remediation performance was excellent even at high (20%) effluent concentration reaching 28% and 65% removal of Cu and Pb, respectively, by MMM 1 (0.5%ZnO; 89%NMP). These findings confirmed the promising prospect of the developed membranes as a wastewater remediation treatment, including in textile industries.</p>","PeriodicalId":9067,"journal":{"name":"Bioresources and Bioprocessing","volume":"12 1","pages":"64"},"PeriodicalIF":4.3000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12179051/pdf/","citationCount":"0","resultStr":"{\"title\":\"Oil palm residue-based cellulose acetate membranes enhanced with zinc oxide and n-methyl pyrrolidinone for batik wastewater treatment.\",\"authors\":\"Belladini Lovely, Hasna Amalia Fauziyyah, Shendy Krisdayanti, Muhamad Zakky Irsyada, Lisna Efiyanti, Wara Dyah Pita Rengga, Novitri Hastuti, R A Ilyas, Mohd Nor Faiz Norrrahim, Victor Feizal Knight\",\"doi\":\"10.1186/s40643-025-00880-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As the world's top producers of oil palm (Elaeis guineensis), Indonesia and Malaysia are urged to propose a value-added valorization of its lignocellulosic biomass, oil palm empty fruit bunches (OPEFB). Meanwhile, the nations' signature 'batik' textile industries are in dire need of optimum remediation treatments of their wastewater high in harmful dyes and chemicals. Organic-inorganic hybrid systems of mixed matrix membranes (MMMs) for heavy metals removal were prepared using OPEFB-based cellulose acetate (CA) and zinc oxide (ZnO; 0.5, 0.75, 1%, w/v) in N-methyl pyrrolidinone (NMP; 89, 90, 91%, v/v). The high crystallinity (62.42%) and fibrils' web-like structure of OPEFB-CA were confirmed. Microscopic observation of OPEFB CA-NMP-ZnO membranes evidenced the porous yet smooth surface due to the use of plasticizing NMP, as well as uniform dispersion of ZnO particles. MMM 2 (0.75%ZnO; 90%NMP) was the best-performing membrane mechanically with excellent tensile strength (1.78 MPa), Young's modulus (0.13 GPa), and elongation-at-break (2.59%), while thermal stability (T<sub>d,5%</sub>, 291 °C) improvement was also highlighted. Pores characteristics on size, volume, and surface area were discussed, too. Remediation performance was excellent even at high (20%) effluent concentration reaching 28% and 65% removal of Cu and Pb, respectively, by MMM 1 (0.5%ZnO; 89%NMP). These findings confirmed the promising prospect of the developed membranes as a wastewater remediation treatment, including in textile industries.</p>\",\"PeriodicalId\":9067,\"journal\":{\"name\":\"Bioresources and Bioprocessing\",\"volume\":\"12 1\",\"pages\":\"64\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12179051/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresources and Bioprocessing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s40643-025-00880-x\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresources and Bioprocessing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s40643-025-00880-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Oil palm residue-based cellulose acetate membranes enhanced with zinc oxide and n-methyl pyrrolidinone for batik wastewater treatment.
As the world's top producers of oil palm (Elaeis guineensis), Indonesia and Malaysia are urged to propose a value-added valorization of its lignocellulosic biomass, oil palm empty fruit bunches (OPEFB). Meanwhile, the nations' signature 'batik' textile industries are in dire need of optimum remediation treatments of their wastewater high in harmful dyes and chemicals. Organic-inorganic hybrid systems of mixed matrix membranes (MMMs) for heavy metals removal were prepared using OPEFB-based cellulose acetate (CA) and zinc oxide (ZnO; 0.5, 0.75, 1%, w/v) in N-methyl pyrrolidinone (NMP; 89, 90, 91%, v/v). The high crystallinity (62.42%) and fibrils' web-like structure of OPEFB-CA were confirmed. Microscopic observation of OPEFB CA-NMP-ZnO membranes evidenced the porous yet smooth surface due to the use of plasticizing NMP, as well as uniform dispersion of ZnO particles. MMM 2 (0.75%ZnO; 90%NMP) was the best-performing membrane mechanically with excellent tensile strength (1.78 MPa), Young's modulus (0.13 GPa), and elongation-at-break (2.59%), while thermal stability (Td,5%, 291 °C) improvement was also highlighted. Pores characteristics on size, volume, and surface area were discussed, too. Remediation performance was excellent even at high (20%) effluent concentration reaching 28% and 65% removal of Cu and Pb, respectively, by MMM 1 (0.5%ZnO; 89%NMP). These findings confirmed the promising prospect of the developed membranes as a wastewater remediation treatment, including in textile industries.
期刊介绍:
Bioresources and Bioprocessing (BIOB) is a peer-reviewed open access journal published under the brand SpringerOpen. BIOB aims at providing an international academic platform for exchanging views on and promoting research to support bioresource development, processing and utilization in a sustainable manner. As an application-oriented research journal, BIOB covers not only the application and management of bioresource technology but also the design and development of bioprocesses that will lead to new and sustainable production processes. BIOB publishes original and review articles on most topics relating to bioresource and bioprocess engineering, including: -Biochemical and microbiological engineering -Biocatalysis and biotransformation -Biosynthesis and metabolic engineering -Bioprocess and biosystems engineering -Bioenergy and biorefinery -Cell culture and biomedical engineering -Food, agricultural and marine biotechnology -Bioseparation and biopurification engineering -Bioremediation and environmental biotechnology