Di Liu, Yafen Zhan, Jiaqi Qu, Hongping Qiao, Na Li, Yeli Zhang, Xiaoying Wu
{"title":"工程化的Prx-LCA2融合蛋白通过增强细胞内过氧化物酶的传递来修复氧化性皮肤损伤。","authors":"Di Liu, Yafen Zhan, Jiaqi Qu, Hongping Qiao, Na Li, Yeli Zhang, Xiaoying Wu","doi":"10.1186/s13568-025-01906-5","DOIUrl":null,"url":null,"abstract":"<p><p>This study developed a novel antioxidant fusion protein Prx-LCA2 by conjugating peroxidase Prx with the LCA2 carrier derived from Escherichia coli heat-labile enterotoxin, aiming to achieve efficient intracellular delivery for oxidative damage remediation. The fusion protein Prx-LCA2 was successfully expressed in E. coli and purified. Fluorescence labeling demonstrated efficient cellular internalization of the fusion protein. In vitro, H<sub>2</sub>O<sub>2</sub>-induced oxidative stress in A431 cells was alleviated by Prx-LCA2 treatment, as evidenced by increased cell viability, reduced ROS levels, enhanced antioxidant enzyme activities, and decreased levels of MDA and PCG. In vivo, H<sub>2</sub>O<sub>2</sub>-induced skin oxidative damage in mice was significantly ameliorated by Prx-LCA2 treatment, including improvement in antioxidant enzyme activities and reduction in oxidative damage markers (MDA, PCG and 8-OHdG). Additionally, Prx-LCA2 increased HYP content in the skin, indicating improved collagen integrity. Histological analysis of mouse skin further confirmed the therapeutic efficacy of Prx-LCA2. The enterotoxin-derived carrier system exhibited excellent biosafety profile with no observed cytotoxicity or skin irritation. This microbial-based protein engineering strategy provides a promising platform for transdermal delivery of antioxidant therapeutics.</p>","PeriodicalId":7537,"journal":{"name":"AMB Express","volume":"15 1","pages":"94"},"PeriodicalIF":3.5000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12177121/pdf/","citationCount":"0","resultStr":"{\"title\":\"Engineered Prx-LCA2 fusion protein restores oxidative skin damage via enhanced intracellular peroxidase delivery.\",\"authors\":\"Di Liu, Yafen Zhan, Jiaqi Qu, Hongping Qiao, Na Li, Yeli Zhang, Xiaoying Wu\",\"doi\":\"10.1186/s13568-025-01906-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study developed a novel antioxidant fusion protein Prx-LCA2 by conjugating peroxidase Prx with the LCA2 carrier derived from Escherichia coli heat-labile enterotoxin, aiming to achieve efficient intracellular delivery for oxidative damage remediation. The fusion protein Prx-LCA2 was successfully expressed in E. coli and purified. Fluorescence labeling demonstrated efficient cellular internalization of the fusion protein. In vitro, H<sub>2</sub>O<sub>2</sub>-induced oxidative stress in A431 cells was alleviated by Prx-LCA2 treatment, as evidenced by increased cell viability, reduced ROS levels, enhanced antioxidant enzyme activities, and decreased levels of MDA and PCG. In vivo, H<sub>2</sub>O<sub>2</sub>-induced skin oxidative damage in mice was significantly ameliorated by Prx-LCA2 treatment, including improvement in antioxidant enzyme activities and reduction in oxidative damage markers (MDA, PCG and 8-OHdG). Additionally, Prx-LCA2 increased HYP content in the skin, indicating improved collagen integrity. Histological analysis of mouse skin further confirmed the therapeutic efficacy of Prx-LCA2. The enterotoxin-derived carrier system exhibited excellent biosafety profile with no observed cytotoxicity or skin irritation. This microbial-based protein engineering strategy provides a promising platform for transdermal delivery of antioxidant therapeutics.</p>\",\"PeriodicalId\":7537,\"journal\":{\"name\":\"AMB Express\",\"volume\":\"15 1\",\"pages\":\"94\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12177121/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMB Express\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s13568-025-01906-5\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMB Express","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13568-025-01906-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Engineered Prx-LCA2 fusion protein restores oxidative skin damage via enhanced intracellular peroxidase delivery.
This study developed a novel antioxidant fusion protein Prx-LCA2 by conjugating peroxidase Prx with the LCA2 carrier derived from Escherichia coli heat-labile enterotoxin, aiming to achieve efficient intracellular delivery for oxidative damage remediation. The fusion protein Prx-LCA2 was successfully expressed in E. coli and purified. Fluorescence labeling demonstrated efficient cellular internalization of the fusion protein. In vitro, H2O2-induced oxidative stress in A431 cells was alleviated by Prx-LCA2 treatment, as evidenced by increased cell viability, reduced ROS levels, enhanced antioxidant enzyme activities, and decreased levels of MDA and PCG. In vivo, H2O2-induced skin oxidative damage in mice was significantly ameliorated by Prx-LCA2 treatment, including improvement in antioxidant enzyme activities and reduction in oxidative damage markers (MDA, PCG and 8-OHdG). Additionally, Prx-LCA2 increased HYP content in the skin, indicating improved collagen integrity. Histological analysis of mouse skin further confirmed the therapeutic efficacy of Prx-LCA2. The enterotoxin-derived carrier system exhibited excellent biosafety profile with no observed cytotoxicity or skin irritation. This microbial-based protein engineering strategy provides a promising platform for transdermal delivery of antioxidant therapeutics.
期刊介绍:
AMB Express is a high quality journal that brings together research in the area of Applied and Industrial Microbiology with a particular interest in ''White Biotechnology'' and ''Red Biotechnology''. The emphasis is on processes employing microorganisms, eukaryotic cell cultures or enzymes for the biosynthesis, transformation and degradation of compounds. This includes fine and bulk chemicals, polymeric compounds and enzymes or other proteins. Downstream processes are also considered. Integrated processes combining biochemical and chemical processes are also published.