球形淀粉纳米颗粒及其周围界面相在聚合物纳米复合材料中的强化作用。

IF 7.7 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yasser Zare, Muhammad Naqvi, Kyong Yop Rhee, Soo-Jin Park
{"title":"球形淀粉纳米颗粒及其周围界面相在聚合物纳米复合材料中的强化作用。","authors":"Yasser Zare, Muhammad Naqvi, Kyong Yop Rhee, Soo-Jin Park","doi":"10.1016/j.ijbiomac.2025.145317","DOIUrl":null,"url":null,"abstract":"<p><p>Although extensive experimental data exist, modeling studies on the tensile strength of starch-filled nanocomposites remain incomplete, hindering the optimization of formulations. In this study, the Nicolais-Narkis model is modified and expanded by introducing the interfacial parameter a, enabling the estimation of tensile strength in starch-based nanocomposites. The enhanced model incorporates critical factors such as interphase thickness, interphase strength, and starch particle size. Experimental data from various starch-filled samples are utilized to validate the proposed model. Furthermore, parametric analyses are conducted to evaluate the influence of all relevant parameters on the interfacial parameter a and the overall strength of the nanocomposites. The results indicate that a starch radius (R) of 20 nm with an interphase depth (t) of 50 nm yields interface parameter (a) of 10, resulting in a 300 % improvement in nanocomposite strength. In contrast, R = 90 nm and t = 15 nm result in a < 0, offering no reinforcement. These findings underscore that smaller nanoparticles and a denser interphase significantly enhance nanocomposite strength. Conversely, larger nanoparticles and a thinner interphase fail to improve the mechanical properties. Additionally, the highest values of a and nanocomposite strength are achieved with the weakest polymer matrix and the most robust interphase. In contrast, a strong polymer matrix and a weak interphase lead to a < 0, resulting in no reinforcement.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"145317"},"PeriodicalIF":7.7000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strengthening efficacy of spherical starch nanoparticles and surrounding interphase in polymer nanocomposites.\",\"authors\":\"Yasser Zare, Muhammad Naqvi, Kyong Yop Rhee, Soo-Jin Park\",\"doi\":\"10.1016/j.ijbiomac.2025.145317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although extensive experimental data exist, modeling studies on the tensile strength of starch-filled nanocomposites remain incomplete, hindering the optimization of formulations. In this study, the Nicolais-Narkis model is modified and expanded by introducing the interfacial parameter a, enabling the estimation of tensile strength in starch-based nanocomposites. The enhanced model incorporates critical factors such as interphase thickness, interphase strength, and starch particle size. Experimental data from various starch-filled samples are utilized to validate the proposed model. Furthermore, parametric analyses are conducted to evaluate the influence of all relevant parameters on the interfacial parameter a and the overall strength of the nanocomposites. The results indicate that a starch radius (R) of 20 nm with an interphase depth (t) of 50 nm yields interface parameter (a) of 10, resulting in a 300 % improvement in nanocomposite strength. In contrast, R = 90 nm and t = 15 nm result in a < 0, offering no reinforcement. These findings underscore that smaller nanoparticles and a denser interphase significantly enhance nanocomposite strength. Conversely, larger nanoparticles and a thinner interphase fail to improve the mechanical properties. Additionally, the highest values of a and nanocomposite strength are achieved with the weakest polymer matrix and the most robust interphase. In contrast, a strong polymer matrix and a weak interphase lead to a < 0, resulting in no reinforcement.</p>\",\"PeriodicalId\":333,\"journal\":{\"name\":\"International Journal of Biological Macromolecules\",\"volume\":\" \",\"pages\":\"145317\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biological Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ijbiomac.2025.145317\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2025.145317","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

尽管有大量的实验数据,但淀粉填充纳米复合材料抗拉强度的建模研究仍然不完整,这阻碍了配方的优化。在本研究中,通过引入界面参数a,对Nicolais-Narkis模型进行了修正和扩展,从而能够估计淀粉基纳米复合材料的抗拉强度。增强模型结合了关键因素,如间相厚度、间相强度和淀粉粒度。利用各种淀粉填充样品的实验数据来验证所提出的模型。此外,还进行了参数分析,以评估各相关参数对界面参数a和纳米复合材料整体强度的影响。结果表明,当淀粉半径(R)为20 nm,界面深度(t)为50 nm时,界面参数(a)为10,纳米复合材料强度提高300 %。R = 90 nm, t = 15 nm得到a
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strengthening efficacy of spherical starch nanoparticles and surrounding interphase in polymer nanocomposites.

Although extensive experimental data exist, modeling studies on the tensile strength of starch-filled nanocomposites remain incomplete, hindering the optimization of formulations. In this study, the Nicolais-Narkis model is modified and expanded by introducing the interfacial parameter a, enabling the estimation of tensile strength in starch-based nanocomposites. The enhanced model incorporates critical factors such as interphase thickness, interphase strength, and starch particle size. Experimental data from various starch-filled samples are utilized to validate the proposed model. Furthermore, parametric analyses are conducted to evaluate the influence of all relevant parameters on the interfacial parameter a and the overall strength of the nanocomposites. The results indicate that a starch radius (R) of 20 nm with an interphase depth (t) of 50 nm yields interface parameter (a) of 10, resulting in a 300 % improvement in nanocomposite strength. In contrast, R = 90 nm and t = 15 nm result in a < 0, offering no reinforcement. These findings underscore that smaller nanoparticles and a denser interphase significantly enhance nanocomposite strength. Conversely, larger nanoparticles and a thinner interphase fail to improve the mechanical properties. Additionally, the highest values of a and nanocomposite strength are achieved with the weakest polymer matrix and the most robust interphase. In contrast, a strong polymer matrix and a weak interphase lead to a < 0, resulting in no reinforcement.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Biological Macromolecules
International Journal of Biological Macromolecules 生物-生化与分子生物学
CiteScore
13.70
自引率
9.80%
发文量
2728
审稿时长
64 days
期刊介绍: The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信