{"title":"氮素添加对中国农田土壤碳和养分动态的影响:机器学习和全国综合。","authors":"Yu Li, Yuan Li","doi":"10.1186/s13021-025-00305-4","DOIUrl":null,"url":null,"abstract":"<p><p>Nitrogen (N) addition is a critical driver of soil organic carbon (SOC) sequestration and nutrient cycling in croplands. However, its spatial variability and long-term effects under diverse environmental conditions remain poorly understood. We synthesised data from 479 cropland sites across China and apply machine learning models to evaluate the impacts of N addition on SOC and key soil nutrient indicators, including total nitrogen (TN), nitrate (NO₃⁻-N), ammonium (NH₄⁺-N), the carbon-to-nitrogen ratio (C/N), and available phosphorus (AP). We further evaluated the moderating roles of climate zones, fertiliser types, and fertilisation duration. Our findings demonstrate that N addition significantly increased SOC, TN, NO₃⁻-N, NH₄⁺-N, and AP contents, whereas the C/N ratio remains unaffected. SOC sequestration was greater in arid regions, whereas nutrient accumulation was more pronounced in humid zones. Organic and integrated (organic-inorganic) fertilisers outperformed chemical ones in enhancing SOC and nutrient cycling. Long-term N input (> 10 years) markedly intensified SOC storage and nutrient accumulation. We further developed the high-resolution (5 km) national-scale dataset that predicts the spatial responses of SOC and nutrient dynamics to nitrogen addition across China. This AI-derived dataset enables automated mapping of soil carbon and nutrient functions, capturing substantial spatial heterogeneity under varying environmental conditions. These results provide critical insights for optimising nitrogen management strategies, enhancing soil carbon sink functions, and informing precision agriculture policies in China.</p>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"20 1","pages":"15"},"PeriodicalIF":3.9000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12177997/pdf/","citationCount":"0","resultStr":"{\"title\":\"Nitrogen addition enhances soil carbon and nutrient dynamics in Chinese croplands: a machine learning and nationwide synthesis.\",\"authors\":\"Yu Li, Yuan Li\",\"doi\":\"10.1186/s13021-025-00305-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nitrogen (N) addition is a critical driver of soil organic carbon (SOC) sequestration and nutrient cycling in croplands. However, its spatial variability and long-term effects under diverse environmental conditions remain poorly understood. We synthesised data from 479 cropland sites across China and apply machine learning models to evaluate the impacts of N addition on SOC and key soil nutrient indicators, including total nitrogen (TN), nitrate (NO₃⁻-N), ammonium (NH₄⁺-N), the carbon-to-nitrogen ratio (C/N), and available phosphorus (AP). We further evaluated the moderating roles of climate zones, fertiliser types, and fertilisation duration. Our findings demonstrate that N addition significantly increased SOC, TN, NO₃⁻-N, NH₄⁺-N, and AP contents, whereas the C/N ratio remains unaffected. SOC sequestration was greater in arid regions, whereas nutrient accumulation was more pronounced in humid zones. Organic and integrated (organic-inorganic) fertilisers outperformed chemical ones in enhancing SOC and nutrient cycling. Long-term N input (> 10 years) markedly intensified SOC storage and nutrient accumulation. We further developed the high-resolution (5 km) national-scale dataset that predicts the spatial responses of SOC and nutrient dynamics to nitrogen addition across China. This AI-derived dataset enables automated mapping of soil carbon and nutrient functions, capturing substantial spatial heterogeneity under varying environmental conditions. These results provide critical insights for optimising nitrogen management strategies, enhancing soil carbon sink functions, and informing precision agriculture policies in China.</p>\",\"PeriodicalId\":505,\"journal\":{\"name\":\"Carbon Balance and Management\",\"volume\":\"20 1\",\"pages\":\"15\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12177997/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Balance and Management\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1186/s13021-025-00305-4\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Balance and Management","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1186/s13021-025-00305-4","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Nitrogen addition enhances soil carbon and nutrient dynamics in Chinese croplands: a machine learning and nationwide synthesis.
Nitrogen (N) addition is a critical driver of soil organic carbon (SOC) sequestration and nutrient cycling in croplands. However, its spatial variability and long-term effects under diverse environmental conditions remain poorly understood. We synthesised data from 479 cropland sites across China and apply machine learning models to evaluate the impacts of N addition on SOC and key soil nutrient indicators, including total nitrogen (TN), nitrate (NO₃⁻-N), ammonium (NH₄⁺-N), the carbon-to-nitrogen ratio (C/N), and available phosphorus (AP). We further evaluated the moderating roles of climate zones, fertiliser types, and fertilisation duration. Our findings demonstrate that N addition significantly increased SOC, TN, NO₃⁻-N, NH₄⁺-N, and AP contents, whereas the C/N ratio remains unaffected. SOC sequestration was greater in arid regions, whereas nutrient accumulation was more pronounced in humid zones. Organic and integrated (organic-inorganic) fertilisers outperformed chemical ones in enhancing SOC and nutrient cycling. Long-term N input (> 10 years) markedly intensified SOC storage and nutrient accumulation. We further developed the high-resolution (5 km) national-scale dataset that predicts the spatial responses of SOC and nutrient dynamics to nitrogen addition across China. This AI-derived dataset enables automated mapping of soil carbon and nutrient functions, capturing substantial spatial heterogeneity under varying environmental conditions. These results provide critical insights for optimising nitrogen management strategies, enhancing soil carbon sink functions, and informing precision agriculture policies in China.
期刊介绍:
Carbon Balance and Management is an open access, peer-reviewed online journal that encompasses all aspects of research aimed at developing a comprehensive policy relevant to the understanding of the global carbon cycle.
The global carbon cycle involves important couplings between climate, atmospheric CO2 and the terrestrial and oceanic biospheres. The current transformation of the carbon cycle due to changes in climate and atmospheric composition is widely recognized as potentially dangerous for the biosphere and for the well-being of humankind, and therefore monitoring, understanding and predicting the evolution of the carbon cycle in the context of the whole biosphere (both terrestrial and marine) is a challenge to the scientific community.
This demands interdisciplinary research and new approaches for studying geographical and temporal distributions of carbon pools and fluxes, control and feedback mechanisms of the carbon-climate system, points of intervention and windows of opportunity for managing the carbon-climate-human system.
Carbon Balance and Management is a medium for researchers in the field to convey the results of their research across disciplinary boundaries. Through this dissemination of research, the journal aims to support the work of the Intergovernmental Panel for Climate Change (IPCC) and to provide governmental and non-governmental organizations with instantaneous access to continually emerging knowledge, including paradigm shifts and consensual views.