M-N4基序在锂氧电池金属酞菁基氧化还原介质中的化学作用研究。

IF 6.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-06-18 DOI:10.1002/cssc.202501040
Subhankar Mandal, Sanjukta Parida, Sabyashachi Mishra, Aninda J Bhattacharyya
{"title":"M-N4基序在锂氧电池金属酞菁基氧化还原介质中的化学作用研究。","authors":"Subhankar Mandal, Sanjukta Parida, Sabyashachi Mishra, Aninda J Bhattacharyya","doi":"10.1002/cssc.202501040","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the exceptionally high theoretical specific energy of Li-O<sub>2</sub> rechargeable batteries, their practical realization remains elusive, primarily due to the sluggish oxygen reduction/evolution kinetics and the underlying nontrivial mechanisms. This study systematically investigates, by operando spectroscopy and density functional theory calculations, the anchoring characteristics of various discharge (viz. metal-superoxide, metal-peroxide) and side products (viz. Li<sub>2</sub>CO<sub>3</sub>, LiOH) on the M-N<sub>4</sub> motif of first-row transition metal phthalocyanines redox mediators (RMs) and their impact on Li-O<sub>2</sub> battery performance. The unsaturated d-orbital and discharge products oriented between the two MN bonds lead to stability of the Mn-, Fe-, and Co-based RMs, low charge polarization, and superior battery performance. On the contrary, strong anchoring with the phthalocyanine ring leads to a loss of RM activity. While discharge and parasitic products coordinate more strongly with the metal center for unsaturated d-orbital RMs, for filled d-orbitals, the products coordinate with the porphyrin ring. The findings on the orientation of discharge/side products on the M-N4 motif catalyst clearly account for the polarization during the charging process. This fundamental study aid in comprehensive molecular designs for liquid-based RMs for next-generation battery systems for stationary applications.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e2501040"},"PeriodicalIF":6.6000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probing the Chemical Action of M-N4 Motif in Metal Phthalocyanine-Based Redox Mediators in Li-O<sub>2</sub> Batteries.\",\"authors\":\"Subhankar Mandal, Sanjukta Parida, Sabyashachi Mishra, Aninda J Bhattacharyya\",\"doi\":\"10.1002/cssc.202501040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite the exceptionally high theoretical specific energy of Li-O<sub>2</sub> rechargeable batteries, their practical realization remains elusive, primarily due to the sluggish oxygen reduction/evolution kinetics and the underlying nontrivial mechanisms. This study systematically investigates, by operando spectroscopy and density functional theory calculations, the anchoring characteristics of various discharge (viz. metal-superoxide, metal-peroxide) and side products (viz. Li<sub>2</sub>CO<sub>3</sub>, LiOH) on the M-N<sub>4</sub> motif of first-row transition metal phthalocyanines redox mediators (RMs) and their impact on Li-O<sub>2</sub> battery performance. The unsaturated d-orbital and discharge products oriented between the two MN bonds lead to stability of the Mn-, Fe-, and Co-based RMs, low charge polarization, and superior battery performance. On the contrary, strong anchoring with the phthalocyanine ring leads to a loss of RM activity. While discharge and parasitic products coordinate more strongly with the metal center for unsaturated d-orbital RMs, for filled d-orbitals, the products coordinate with the porphyrin ring. The findings on the orientation of discharge/side products on the M-N4 motif catalyst clearly account for the polarization during the charging process. This fundamental study aid in comprehensive molecular designs for liquid-based RMs for next-generation battery systems for stationary applications.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e2501040\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202501040\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202501040","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

尽管Li-O2可充电电池的理论比能量非常高,但其实际实现仍然难以实现,主要是由于缓慢的氧还原/演化动力学和潜在的非平凡机制。本研究通过operando光谱和DFT计算系统地研究了第一排过渡金属酞菁氧化还原介质(RMs)的M-N4基序上各种放电(即金属-超氧化物、金属-过氧化物)和侧面(即Li2CO3、LiOH)产物的锚定特性及其对Li-O2电池性能的影响。不饱和d轨道和在两个M-N键之间取向的放电产物导致了Mn, Fe和co基RM的稳定性,低电荷极化和优异的电池性能。相反,与酞菁环的强锚定会导致RM活性的丧失。放电产物和寄生产物在不饱和d轨道上与金属中心的配位更强,而在填充d轨道上与卟啉环的配位更强。M-N4基序催化剂上的放电/副产物取向清楚地解释了充电过程中的极化现象。这项基础研究将有助于下一代固定应用电池系统的液体基RM的综合分子设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probing the Chemical Action of M-N4 Motif in Metal Phthalocyanine-Based Redox Mediators in Li-O2 Batteries.

Despite the exceptionally high theoretical specific energy of Li-O2 rechargeable batteries, their practical realization remains elusive, primarily due to the sluggish oxygen reduction/evolution kinetics and the underlying nontrivial mechanisms. This study systematically investigates, by operando spectroscopy and density functional theory calculations, the anchoring characteristics of various discharge (viz. metal-superoxide, metal-peroxide) and side products (viz. Li2CO3, LiOH) on the M-N4 motif of first-row transition metal phthalocyanines redox mediators (RMs) and their impact on Li-O2 battery performance. The unsaturated d-orbital and discharge products oriented between the two MN bonds lead to stability of the Mn-, Fe-, and Co-based RMs, low charge polarization, and superior battery performance. On the contrary, strong anchoring with the phthalocyanine ring leads to a loss of RM activity. While discharge and parasitic products coordinate more strongly with the metal center for unsaturated d-orbital RMs, for filled d-orbitals, the products coordinate with the porphyrin ring. The findings on the orientation of discharge/side products on the M-N4 motif catalyst clearly account for the polarization during the charging process. This fundamental study aid in comprehensive molecular designs for liquid-based RMs for next-generation battery systems for stationary applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信