聚七嗪亚胺钠框架对CO2的结晶增强吸附。

IF 6.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-06-19 DOI:10.1002/cssc.202500775
Pedro Ouro, Álvaro Cuevas, Johannes Liessem, Dariusz Mitoraj, Radim Beranek, Eva Díaz, Salvador Ordóñez, Ildefonso Marin-Montesinos, Daniel Pereira, Mariana Sardo, Igor Krivtsov, Luís Mafra, Marina Ilkaeva
{"title":"聚七嗪亚胺钠框架对CO2的结晶增强吸附。","authors":"Pedro Ouro, Álvaro Cuevas, Johannes Liessem, Dariusz Mitoraj, Radim Beranek, Eva Díaz, Salvador Ordóñez, Ildefonso Marin-Montesinos, Daniel Pereira, Mariana Sardo, Igor Krivtsov, Luís Mafra, Marina Ilkaeva","doi":"10.1002/cssc.202500775","DOIUrl":null,"url":null,"abstract":"<p><p>This work presents sodium poly(heptazine imide) (NaPHI)-based materials, synthesized in a NaCl medium, as highly effective platforms for CO<sub>2</sub> capture. High crystallinity-an often-overlooked aspect in PHI frameworks-is identified as a key factor governing CO<sub>2</sub> adsorption capacity in microporous structures. Thermogravimetric analysis and manometric studies reveal a CO<sub>2</sub> uptake of ≈3.8 mmol g<sup>-1</sup>, at 1 bar and 25 °C, surpassing most reported PHI-based adsorbents under similar conditions. Exchanging Na<sup>+</sup> with K<sup>+</sup> or Rb<sup>+</sup> preserves CO<sub>2</sub> adsorption performance, whereas Cs<sup>+</sup> incorporation induces structural distortion, greatly reducing CO<sub>2</sub> adsorption capacity in PHI. These materials exhibit excellent cyclic stability (20 cycles) without degradation and CO<sub>2</sub> adsorption capacity loss. Notably, at flue gas-relevant temperature (100 °C), NaPHI attains a CO<sub>2</sub> capacity of 2.1 mmol g<sup>-1</sup>, doubling the performance of benchmark Zeolite 13X (1.1 mmol g<sup>-1</sup>). Ideal Adsorbed Solution Theory confirms remarkable CO<sub>2</sub>/N<sub>2</sub> selectivity (≈3.8 mmol g<sup>-1</sup> vs typical N<sub>2</sub> adsorption of 0.3 mmol g<sup>-1</sup>), a critical property for postcombustion CO<sub>2</sub> capture. These findings position PHI-based materials as a disruptive platform for CO<sub>2</sub> adsorption, offering 1) straightforward synthesis from readily available precursors, 2) promising scalability, and 3) outstanding performance.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e2500775"},"PeriodicalIF":6.6000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crystallinity-Enhanced CO<sub>2</sub> Adsorption by Sodium Poly(Heptazine Imide) Frameworks.\",\"authors\":\"Pedro Ouro, Álvaro Cuevas, Johannes Liessem, Dariusz Mitoraj, Radim Beranek, Eva Díaz, Salvador Ordóñez, Ildefonso Marin-Montesinos, Daniel Pereira, Mariana Sardo, Igor Krivtsov, Luís Mafra, Marina Ilkaeva\",\"doi\":\"10.1002/cssc.202500775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This work presents sodium poly(heptazine imide) (NaPHI)-based materials, synthesized in a NaCl medium, as highly effective platforms for CO<sub>2</sub> capture. High crystallinity-an often-overlooked aspect in PHI frameworks-is identified as a key factor governing CO<sub>2</sub> adsorption capacity in microporous structures. Thermogravimetric analysis and manometric studies reveal a CO<sub>2</sub> uptake of ≈3.8 mmol g<sup>-1</sup>, at 1 bar and 25 °C, surpassing most reported PHI-based adsorbents under similar conditions. Exchanging Na<sup>+</sup> with K<sup>+</sup> or Rb<sup>+</sup> preserves CO<sub>2</sub> adsorption performance, whereas Cs<sup>+</sup> incorporation induces structural distortion, greatly reducing CO<sub>2</sub> adsorption capacity in PHI. These materials exhibit excellent cyclic stability (20 cycles) without degradation and CO<sub>2</sub> adsorption capacity loss. Notably, at flue gas-relevant temperature (100 °C), NaPHI attains a CO<sub>2</sub> capacity of 2.1 mmol g<sup>-1</sup>, doubling the performance of benchmark Zeolite 13X (1.1 mmol g<sup>-1</sup>). Ideal Adsorbed Solution Theory confirms remarkable CO<sub>2</sub>/N<sub>2</sub> selectivity (≈3.8 mmol g<sup>-1</sup> vs typical N<sub>2</sub> adsorption of 0.3 mmol g<sup>-1</sup>), a critical property for postcombustion CO<sub>2</sub> capture. These findings position PHI-based materials as a disruptive platform for CO<sub>2</sub> adsorption, offering 1) straightforward synthesis from readily available precursors, 2) promising scalability, and 3) outstanding performance.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e2500775\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202500775\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202500775","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了在NaCl介质中合成的聚七嗪亚胺钠(NaPHI)基材料,作为捕获CO₂的高效平台。高结晶度-在PHI框架中经常被忽视的一个方面-被认为是控制微孔结构中CO₂吸附能力的关键因素。热重分析(TGA)和压力分析表明,在1 bar和25°C条件下,CO 2吸收量为~3.8 mmol/g,超过了大多数报道的基于ph的吸附剂。用K+或Rb+交换Na+保持了CO2的吸附性能,而加入Cs+导致结构畸变,大大降低了CO2在PHI中的吸附能力。这些材料表现出优异的循环稳定性(20次循环),没有降解和二氧化碳吸附能力损失。值得注意的是,在烟气相关温度(100°C)下,NaPHI的CO₂容量达到2.1 mmol/g,是基准沸石13X (1.1 mmol/g)性能的两倍。理想吸附溶液理论(IAST)证实了显著的CO₂/N₂选择性(~3.8 mmol/g,而典型的N₂吸附为0.3 mmol/g),这是燃烧后CO2捕获的关键特性。这些发现将基于ph的材料定位为CO₂吸附的颠覆性平台,提供(i)从现成的前体直接合成,(ii)有前景的可扩展性,以及(iii)出色的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Crystallinity-Enhanced CO2 Adsorption by Sodium Poly(Heptazine Imide) Frameworks.

This work presents sodium poly(heptazine imide) (NaPHI)-based materials, synthesized in a NaCl medium, as highly effective platforms for CO2 capture. High crystallinity-an often-overlooked aspect in PHI frameworks-is identified as a key factor governing CO2 adsorption capacity in microporous structures. Thermogravimetric analysis and manometric studies reveal a CO2 uptake of ≈3.8 mmol g-1, at 1 bar and 25 °C, surpassing most reported PHI-based adsorbents under similar conditions. Exchanging Na+ with K+ or Rb+ preserves CO2 adsorption performance, whereas Cs+ incorporation induces structural distortion, greatly reducing CO2 adsorption capacity in PHI. These materials exhibit excellent cyclic stability (20 cycles) without degradation and CO2 adsorption capacity loss. Notably, at flue gas-relevant temperature (100 °C), NaPHI attains a CO2 capacity of 2.1 mmol g-1, doubling the performance of benchmark Zeolite 13X (1.1 mmol g-1). Ideal Adsorbed Solution Theory confirms remarkable CO2/N2 selectivity (≈3.8 mmol g-1 vs typical N2 adsorption of 0.3 mmol g-1), a critical property for postcombustion CO2 capture. These findings position PHI-based materials as a disruptive platform for CO2 adsorption, offering 1) straightforward synthesis from readily available precursors, 2) promising scalability, and 3) outstanding performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信