H-ZSM-5沸石催化腰果壳氢腰果酚反式烷基化制备生物基苯酚

IF 6.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-06-18 DOI:10.1002/cssc.202500401
Jan J Wiesfeld, Keisuke Iriba, Satoshi Suganuma, Emiel J M Hensen, Ryota Osuga, Kiyotaka Nakajima
{"title":"H-ZSM-5沸石催化腰果壳氢腰果酚反式烷基化制备生物基苯酚","authors":"Jan J Wiesfeld, Keisuke Iriba, Satoshi Suganuma, Emiel J M Hensen, Ryota Osuga, Kiyotaka Nakajima","doi":"10.1002/cssc.202500401","DOIUrl":null,"url":null,"abstract":"<p><p>Cardanol, an unsaturated long-chain alkylphenol derived from agricultural waste, has potential as a sustainable substrate for bio-based phenol production. Herein, the potential of hydrocardanol, readily obtained through cardanol hydrogenation, is demonstrated as a viable feedstock for phenol production via trans-alkylation using toluene as the alkyl acceptor. H-ZSM-5 (SiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> molar ratio = 80) exhibits a 53.7% phenol yield with a high phenolics balance (86.7%) from a 10 wt% hydrocardanol solution at full conversion in a batch reactor. In contrast, cardanol gives only 27.1% phenol under the same reaction conditions. This improved yield with hydrocardanol is attributed to suppressed formation of bi- and/or polycyclic phenols via self-alkylation, due to the higher thermal stability of the saturated side chain. Realkylation of the desired phenol product largely limits the phenol yield. The model reaction experiments with phenol and 1-pentadecene show that the reaction proceeds via hydrocardanol dealkylation on the zeolite, followed by rapid isomerization, cracking and oligomerization reactions of the resulting long-chain olefin, and realkylation of toluene and phenol. This indicates that phenol alkylation could be suppressed by reducing the hydrocardanol-to-toluene ratio. This approach is validated in a fixed-bed flow reactor, achieving a high phenol yield (>95%) with a high carbon balance (>99%).</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e2500401"},"PeriodicalIF":6.6000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bio-Based Phenol from Cashew Nutshells by Catalytic Hydrocardanol Trans-Alkylation Using H-ZSM-5 Zeolite.\",\"authors\":\"Jan J Wiesfeld, Keisuke Iriba, Satoshi Suganuma, Emiel J M Hensen, Ryota Osuga, Kiyotaka Nakajima\",\"doi\":\"10.1002/cssc.202500401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cardanol, an unsaturated long-chain alkylphenol derived from agricultural waste, has potential as a sustainable substrate for bio-based phenol production. Herein, the potential of hydrocardanol, readily obtained through cardanol hydrogenation, is demonstrated as a viable feedstock for phenol production via trans-alkylation using toluene as the alkyl acceptor. H-ZSM-5 (SiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> molar ratio = 80) exhibits a 53.7% phenol yield with a high phenolics balance (86.7%) from a 10 wt% hydrocardanol solution at full conversion in a batch reactor. In contrast, cardanol gives only 27.1% phenol under the same reaction conditions. This improved yield with hydrocardanol is attributed to suppressed formation of bi- and/or polycyclic phenols via self-alkylation, due to the higher thermal stability of the saturated side chain. Realkylation of the desired phenol product largely limits the phenol yield. The model reaction experiments with phenol and 1-pentadecene show that the reaction proceeds via hydrocardanol dealkylation on the zeolite, followed by rapid isomerization, cracking and oligomerization reactions of the resulting long-chain olefin, and realkylation of toluene and phenol. This indicates that phenol alkylation could be suppressed by reducing the hydrocardanol-to-toluene ratio. This approach is validated in a fixed-bed flow reactor, achieving a high phenol yield (>95%) with a high carbon balance (>99%).</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e2500401\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202500401\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202500401","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

腰果酚是一种从农业废弃物中提取的不饱和长链烷基酚,具有作为生物基苯酚生产可持续底物的潜力。在这里,我们证明了氢腰果酚的潜力,它很容易通过腰果酚氢化得到,作为一种可行的原料,通过甲苯作为烷基受体,通过反式烷基化生产苯酚。HZSM-5 (SiO2/Al2O3摩尔比= 80)在间歇反应器中,从10 wt%的氢腰果酚溶液中获得了53.7%的苯酚产率和高酚平衡(86.7%)。相比之下,在相同的反应条件下,腰果酚只产生27.1%的苯酚。由于饱和侧链具有较高的热稳定性,通过自烷基化抑制了双环和/或多环酚的形成,从而提高了氢腰果酚的收率。所需苯酚产物的再烷基化很大程度上限制了苯酚的产率。苯酚与1-十五烯的模型反应实验表明,该反应首先在沸石上进行氢腰果酚脱烷基反应,然后进行长链烯烃的快速异构化、裂解和低聚反应,再进行甲苯和苯酚的再烷基化反应。这表明降低氢腰果酚与甲苯的比例可以抑制苯酚的烷基化。该方法在固定床流动反应器中进行了验证,获得了高苯酚收率(>95%)和高碳平衡(>99%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bio-Based Phenol from Cashew Nutshells by Catalytic Hydrocardanol Trans-Alkylation Using H-ZSM-5 Zeolite.

Cardanol, an unsaturated long-chain alkylphenol derived from agricultural waste, has potential as a sustainable substrate for bio-based phenol production. Herein, the potential of hydrocardanol, readily obtained through cardanol hydrogenation, is demonstrated as a viable feedstock for phenol production via trans-alkylation using toluene as the alkyl acceptor. H-ZSM-5 (SiO2/Al2O3 molar ratio = 80) exhibits a 53.7% phenol yield with a high phenolics balance (86.7%) from a 10 wt% hydrocardanol solution at full conversion in a batch reactor. In contrast, cardanol gives only 27.1% phenol under the same reaction conditions. This improved yield with hydrocardanol is attributed to suppressed formation of bi- and/or polycyclic phenols via self-alkylation, due to the higher thermal stability of the saturated side chain. Realkylation of the desired phenol product largely limits the phenol yield. The model reaction experiments with phenol and 1-pentadecene show that the reaction proceeds via hydrocardanol dealkylation on the zeolite, followed by rapid isomerization, cracking and oligomerization reactions of the resulting long-chain olefin, and realkylation of toluene and phenol. This indicates that phenol alkylation could be suppressed by reducing the hydrocardanol-to-toluene ratio. This approach is validated in a fixed-bed flow reactor, achieving a high phenol yield (>95%) with a high carbon balance (>99%).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信