{"title":"调节芳香氨基酸残基侧链极性的淀粉样蛋白模拟肽工程。","authors":"Pijush Singh, Sourav Bhowmik, Apurba K Das, Jayanta Nanda, Jishu Naskar","doi":"10.1002/cbic.202500281","DOIUrl":null,"url":null,"abstract":"<p><p>Triggering higher order assembly, peptides form a number of nanoscale architectures. Self-assembly of phenylalanine homopeptides and its derivatives have been studied extensively, but the supramolecular assembly of aromatic peptides in interplay with side chain polarity is yet to be understood. Herein, the p-nitrophenylalanine, H-Phe(p-NO<sub>2</sub>)-OH, a chemically modified aromatic amino acid, has been shuffled in a highly aromatic peptide, Boc-Phe-Phe-Phe-OH (P1), which results three mutated analogs having different polarity. The morphological investigation reveals that except Boc-Phe(p-NO<sub>2</sub>)-Phe-Phe-OH (P2), all peptides aggregate into supramolecular nanofibrils in aqueous solution. The long entangled nanofibrils formed by Boc-Phe-Phe(p-NO<sub>2</sub>)-Phe-OH (P3) are able to arrest the solvent molecules leading to \"sol-to-gel\" phase transition. Interestingly, the hydrogel is mechanically robust and the gel fibrils are amyloidogenic in nature. Conformational analysis reveals the presence of cross-β arrangement of the β-strand in the gel fibrils. The rheological studies explore the thixotropic property of the self-supported hydrogel matrix. The studies establish that the supramolecular interactions can be tuned modulating the side-chain polarity of the amino acid residues. Overall, it paves a new paradigm to fabricate peptide-based biomaterials for imminent applications.</p>","PeriodicalId":140,"journal":{"name":"ChemBioChem","volume":" ","pages":"e2500281"},"PeriodicalIF":2.6000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering of Amyloid Mimicking Peptide Modulating Side-Chain Polarity of Aromatic Amino Acid Residue.\",\"authors\":\"Pijush Singh, Sourav Bhowmik, Apurba K Das, Jayanta Nanda, Jishu Naskar\",\"doi\":\"10.1002/cbic.202500281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Triggering higher order assembly, peptides form a number of nanoscale architectures. Self-assembly of phenylalanine homopeptides and its derivatives have been studied extensively, but the supramolecular assembly of aromatic peptides in interplay with side chain polarity is yet to be understood. Herein, the p-nitrophenylalanine, H-Phe(p-NO<sub>2</sub>)-OH, a chemically modified aromatic amino acid, has been shuffled in a highly aromatic peptide, Boc-Phe-Phe-Phe-OH (P1), which results three mutated analogs having different polarity. The morphological investigation reveals that except Boc-Phe(p-NO<sub>2</sub>)-Phe-Phe-OH (P2), all peptides aggregate into supramolecular nanofibrils in aqueous solution. The long entangled nanofibrils formed by Boc-Phe-Phe(p-NO<sub>2</sub>)-Phe-OH (P3) are able to arrest the solvent molecules leading to \\\"sol-to-gel\\\" phase transition. Interestingly, the hydrogel is mechanically robust and the gel fibrils are amyloidogenic in nature. Conformational analysis reveals the presence of cross-β arrangement of the β-strand in the gel fibrils. The rheological studies explore the thixotropic property of the self-supported hydrogel matrix. The studies establish that the supramolecular interactions can be tuned modulating the side-chain polarity of the amino acid residues. Overall, it paves a new paradigm to fabricate peptide-based biomaterials for imminent applications.</p>\",\"PeriodicalId\":140,\"journal\":{\"name\":\"ChemBioChem\",\"volume\":\" \",\"pages\":\"e2500281\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemBioChem\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/cbic.202500281\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioChem","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbic.202500281","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Engineering of Amyloid Mimicking Peptide Modulating Side-Chain Polarity of Aromatic Amino Acid Residue.
Triggering higher order assembly, peptides form a number of nanoscale architectures. Self-assembly of phenylalanine homopeptides and its derivatives have been studied extensively, but the supramolecular assembly of aromatic peptides in interplay with side chain polarity is yet to be understood. Herein, the p-nitrophenylalanine, H-Phe(p-NO2)-OH, a chemically modified aromatic amino acid, has been shuffled in a highly aromatic peptide, Boc-Phe-Phe-Phe-OH (P1), which results three mutated analogs having different polarity. The morphological investigation reveals that except Boc-Phe(p-NO2)-Phe-Phe-OH (P2), all peptides aggregate into supramolecular nanofibrils in aqueous solution. The long entangled nanofibrils formed by Boc-Phe-Phe(p-NO2)-Phe-OH (P3) are able to arrest the solvent molecules leading to "sol-to-gel" phase transition. Interestingly, the hydrogel is mechanically robust and the gel fibrils are amyloidogenic in nature. Conformational analysis reveals the presence of cross-β arrangement of the β-strand in the gel fibrils. The rheological studies explore the thixotropic property of the self-supported hydrogel matrix. The studies establish that the supramolecular interactions can be tuned modulating the side-chain polarity of the amino acid residues. Overall, it paves a new paradigm to fabricate peptide-based biomaterials for imminent applications.
期刊介绍:
ChemBioChem (Impact Factor 2018: 2.641) publishes important breakthroughs across all areas at the interface of chemistry and biology, including the fields of chemical biology, bioorganic chemistry, bioinorganic chemistry, synthetic biology, biocatalysis, bionanotechnology, and biomaterials. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and supported by the Asian Chemical Editorial Society (ACES).