振荡-量子位混合量子器件耗散非绝热动力学模拟的计算框架。

IF 5.7 1区 化学 Q2 CHEMISTRY, PHYSICAL
Nam P Vu, Daniel Dong, Xiaohan Dan, Ningyi Lyu, Victor Batista, Yuan Liu
{"title":"振荡-量子位混合量子器件耗散非绝热动力学模拟的计算框架。","authors":"Nam P Vu, Daniel Dong, Xiaohan Dan, Ningyi Lyu, Victor Batista, Yuan Liu","doi":"10.1021/acs.jctc.5c00315","DOIUrl":null,"url":null,"abstract":"<p><p>We introduce a computational framework for simulating nonadiabatic vibronic dynamics on circuit quantum electrodynamics (cQED) platforms. Our approach leverages hybrid oscillator-qubit quantum hardware with midcircuit measurements and resets, enabling the incorporation of environmental effects such as dissipation and dephasing. To demonstrate its capabilities, we simulate energy transfer dynamics in a triad model of photosynthetic chromophores inspired by natural antenna systems. We specifically investigate the role of dissipation during the relaxation dynamics following photoexcitation, where electronic transitions are coupled to the evolution of quantum vibrational modes. Our results indicate that hybrid oscillator-qubit devices, operating with noise levels below the intrinsic dissipation rates of typical molecular antenna systems, can achieve the simulation fidelity required for practical computations on near-term and early fault-tolerant quantum computing platforms.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Computational Framework for Simulations of Dissipative Nonadiabatic Dynamics on Hybrid Oscillator-Qubit Quantum Devices.\",\"authors\":\"Nam P Vu, Daniel Dong, Xiaohan Dan, Ningyi Lyu, Victor Batista, Yuan Liu\",\"doi\":\"10.1021/acs.jctc.5c00315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We introduce a computational framework for simulating nonadiabatic vibronic dynamics on circuit quantum electrodynamics (cQED) platforms. Our approach leverages hybrid oscillator-qubit quantum hardware with midcircuit measurements and resets, enabling the incorporation of environmental effects such as dissipation and dephasing. To demonstrate its capabilities, we simulate energy transfer dynamics in a triad model of photosynthetic chromophores inspired by natural antenna systems. We specifically investigate the role of dissipation during the relaxation dynamics following photoexcitation, where electronic transitions are coupled to the evolution of quantum vibrational modes. Our results indicate that hybrid oscillator-qubit devices, operating with noise levels below the intrinsic dissipation rates of typical molecular antenna systems, can achieve the simulation fidelity required for practical computations on near-term and early fault-tolerant quantum computing platforms.</p>\",\"PeriodicalId\":45,\"journal\":{\"name\":\"Journal of Chemical Theory and Computation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Theory and Computation\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jctc.5c00315\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.5c00315","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了一个在电路量子电动力学(cQED)平台上模拟非绝热振动动力学的计算框架。我们的方法利用混合振荡器-量子比特量子硬件与中路测量和复位,使环境影响,如耗散和去相结合。为了证明它的能力,我们在受自然天线系统启发的光合作用发色团的三元模型中模拟能量传递动力学。我们特别研究了耗散在光激发后弛豫动力学中的作用,其中电子跃迁与量子振动模式的演化相耦合。我们的研究结果表明,在噪声水平低于典型分子天线系统固有耗散率的情况下,混合振荡器-量子比特器件可以在近期和早期容错量子计算平台上实现实际计算所需的模拟保真度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Computational Framework for Simulations of Dissipative Nonadiabatic Dynamics on Hybrid Oscillator-Qubit Quantum Devices.

We introduce a computational framework for simulating nonadiabatic vibronic dynamics on circuit quantum electrodynamics (cQED) platforms. Our approach leverages hybrid oscillator-qubit quantum hardware with midcircuit measurements and resets, enabling the incorporation of environmental effects such as dissipation and dephasing. To demonstrate its capabilities, we simulate energy transfer dynamics in a triad model of photosynthetic chromophores inspired by natural antenna systems. We specifically investigate the role of dissipation during the relaxation dynamics following photoexcitation, where electronic transitions are coupled to the evolution of quantum vibrational modes. Our results indicate that hybrid oscillator-qubit devices, operating with noise levels below the intrinsic dissipation rates of typical molecular antenna systems, can achieve the simulation fidelity required for practical computations on near-term and early fault-tolerant quantum computing platforms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信