Hyeonah Lee, Serim Byun, Moonyoung Kim, Hyeokjung Kim, Hyeran Noh
{"title":"通过改变药物亲和力来调节眼部慢性疾病的药物释放。","authors":"Hyeonah Lee, Serim Byun, Moonyoung Kim, Hyeokjung Kim, Hyeran Noh","doi":"10.1021/acsabm.5c00425","DOIUrl":null,"url":null,"abstract":"<p><p>Effective drug delivery is critical for the management of chronic diseases such as glaucoma, where sustained therapeutic levels can significantly enhance treatment outcomes. In this study, we present a Particles-on-a-Gel (PoG) system that leverages differential nanocarrier affinities to modulate drug release kinetics. By integrating poly(N-isopropylacrylamide) nanogels (pNIPAM) and silver nanoparticles (AgNPs), the PoG platform enables both controlled initial release and prolonged drug delivery. Isothermal titration calorimetry (ITC) was employed to quantitatively characterize the thermodynamic interactions between timolol maleate and the nanocarriers, revealing distinct binding modalities─hydrophobic interactions with pNIPAM and chemically driven binding with AgNPs. These findings underscore the role of thermodynamic tuning in optimizing drug-carrier interactions to enhance release profiles and retention. Furthermore, incorporation of the PoG system into a contact lens-based drug delivery platform demonstrated its translational potential, maintaining optical transparency while enabling sustained drug release. Overall, this work highlights the promise of thermodynamically guided nanocarrier design in developing patient-centric drug delivery systems for chronic disease management.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"5732-5742"},"PeriodicalIF":4.6000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tunable Drug Release through Varying Drug Affinities for Ocular Chronic Disease.\",\"authors\":\"Hyeonah Lee, Serim Byun, Moonyoung Kim, Hyeokjung Kim, Hyeran Noh\",\"doi\":\"10.1021/acsabm.5c00425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Effective drug delivery is critical for the management of chronic diseases such as glaucoma, where sustained therapeutic levels can significantly enhance treatment outcomes. In this study, we present a Particles-on-a-Gel (PoG) system that leverages differential nanocarrier affinities to modulate drug release kinetics. By integrating poly(N-isopropylacrylamide) nanogels (pNIPAM) and silver nanoparticles (AgNPs), the PoG platform enables both controlled initial release and prolonged drug delivery. Isothermal titration calorimetry (ITC) was employed to quantitatively characterize the thermodynamic interactions between timolol maleate and the nanocarriers, revealing distinct binding modalities─hydrophobic interactions with pNIPAM and chemically driven binding with AgNPs. These findings underscore the role of thermodynamic tuning in optimizing drug-carrier interactions to enhance release profiles and retention. Furthermore, incorporation of the PoG system into a contact lens-based drug delivery platform demonstrated its translational potential, maintaining optical transparency while enabling sustained drug release. Overall, this work highlights the promise of thermodynamically guided nanocarrier design in developing patient-centric drug delivery systems for chronic disease management.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\" \",\"pages\":\"5732-5742\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsabm.5c00425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.5c00425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Tunable Drug Release through Varying Drug Affinities for Ocular Chronic Disease.
Effective drug delivery is critical for the management of chronic diseases such as glaucoma, where sustained therapeutic levels can significantly enhance treatment outcomes. In this study, we present a Particles-on-a-Gel (PoG) system that leverages differential nanocarrier affinities to modulate drug release kinetics. By integrating poly(N-isopropylacrylamide) nanogels (pNIPAM) and silver nanoparticles (AgNPs), the PoG platform enables both controlled initial release and prolonged drug delivery. Isothermal titration calorimetry (ITC) was employed to quantitatively characterize the thermodynamic interactions between timolol maleate and the nanocarriers, revealing distinct binding modalities─hydrophobic interactions with pNIPAM and chemically driven binding with AgNPs. These findings underscore the role of thermodynamic tuning in optimizing drug-carrier interactions to enhance release profiles and retention. Furthermore, incorporation of the PoG system into a contact lens-based drug delivery platform demonstrated its translational potential, maintaining optical transparency while enabling sustained drug release. Overall, this work highlights the promise of thermodynamically guided nanocarrier design in developing patient-centric drug delivery systems for chronic disease management.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.