Vikas Ambekar, A. Theja, Meena Panchore, Chithraja Rajan, Bhumika Neole
{"title":"ITC对实现通用逻辑门的负偏置HJVTFET影响的研究","authors":"Vikas Ambekar, A. Theja, Meena Panchore, Chithraja Rajan, Bhumika Neole","doi":"10.1002/jnm.70057","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The objective of this study is to examine how interface trap charges (ITC) influence the logic performance of a <i>p</i>-type heterojunction vertical TFET structure without and with gate overlap (HJVTFET-WOG and HJVTFET-WG). The logic gates can be realized with the help of the HJ-VTFET that uses germanium as the source material. Using HJVTFET-WOG and HJVTFET-WG structures, our simulations have proven that two-input universal logic functions like NAND and NOR gates may be realized. By adjusting the gate-source overlap region and choosing the right silicon body thickness, the suggested vertical TFET is able to perform logic operations. For verifying the universal gate functionality, the HJVTFET drain current characteristic and energy band diagram are analyzed by considering the effect of trapped charges. The tunneling width of logic functions is narrower when the ITC is positive and wider when it is negative, and the effective sub-threshold slopes (SS) have been examined. It has been discovered that positive ITCs can enhance device capabilities, while negative ITCs lead to diminishing functionality. The suggested HJVTFET-WOG structure is a promising structure for implementing the logic gates for digital application under the influence of interface trap charges because its electrical performance is less vulnerable to ITC than HJVTFET-WG.</p>\n </div>","PeriodicalId":50300,"journal":{"name":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","volume":"38 3","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of ITC Impact on Negative Bias HJVTFET for Implementing Universal Logic Gates\",\"authors\":\"Vikas Ambekar, A. Theja, Meena Panchore, Chithraja Rajan, Bhumika Neole\",\"doi\":\"10.1002/jnm.70057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The objective of this study is to examine how interface trap charges (ITC) influence the logic performance of a <i>p</i>-type heterojunction vertical TFET structure without and with gate overlap (HJVTFET-WOG and HJVTFET-WG). The logic gates can be realized with the help of the HJ-VTFET that uses germanium as the source material. Using HJVTFET-WOG and HJVTFET-WG structures, our simulations have proven that two-input universal logic functions like NAND and NOR gates may be realized. By adjusting the gate-source overlap region and choosing the right silicon body thickness, the suggested vertical TFET is able to perform logic operations. For verifying the universal gate functionality, the HJVTFET drain current characteristic and energy band diagram are analyzed by considering the effect of trapped charges. The tunneling width of logic functions is narrower when the ITC is positive and wider when it is negative, and the effective sub-threshold slopes (SS) have been examined. It has been discovered that positive ITCs can enhance device capabilities, while negative ITCs lead to diminishing functionality. The suggested HJVTFET-WOG structure is a promising structure for implementing the logic gates for digital application under the influence of interface trap charges because its electrical performance is less vulnerable to ITC than HJVTFET-WG.</p>\\n </div>\",\"PeriodicalId\":50300,\"journal\":{\"name\":\"International Journal of Numerical Modelling-Electronic Networks Devices and Fields\",\"volume\":\"38 3\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Numerical Modelling-Electronic Networks Devices and Fields\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jnm.70057\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jnm.70057","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Investigation of ITC Impact on Negative Bias HJVTFET for Implementing Universal Logic Gates
The objective of this study is to examine how interface trap charges (ITC) influence the logic performance of a p-type heterojunction vertical TFET structure without and with gate overlap (HJVTFET-WOG and HJVTFET-WG). The logic gates can be realized with the help of the HJ-VTFET that uses germanium as the source material. Using HJVTFET-WOG and HJVTFET-WG structures, our simulations have proven that two-input universal logic functions like NAND and NOR gates may be realized. By adjusting the gate-source overlap region and choosing the right silicon body thickness, the suggested vertical TFET is able to perform logic operations. For verifying the universal gate functionality, the HJVTFET drain current characteristic and energy band diagram are analyzed by considering the effect of trapped charges. The tunneling width of logic functions is narrower when the ITC is positive and wider when it is negative, and the effective sub-threshold slopes (SS) have been examined. It has been discovered that positive ITCs can enhance device capabilities, while negative ITCs lead to diminishing functionality. The suggested HJVTFET-WOG structure is a promising structure for implementing the logic gates for digital application under the influence of interface trap charges because its electrical performance is less vulnerable to ITC than HJVTFET-WG.
期刊介绍:
Prediction through modelling forms the basis of engineering design. The computational power at the fingertips of the professional engineer is increasing enormously and techniques for computer simulation are changing rapidly. Engineers need models which relate to their design area and which are adaptable to new design concepts. They also need efficient and friendly ways of presenting, viewing and transmitting the data associated with their models.
The International Journal of Numerical Modelling: Electronic Networks, Devices and Fields provides a communication vehicle for numerical modelling methods and data preparation methods associated with electrical and electronic circuits and fields. It concentrates on numerical modelling rather than abstract numerical mathematics.
Contributions on numerical modelling will cover the entire subject of electrical and electronic engineering. They will range from electrical distribution networks to integrated circuits on VLSI design, and from static electric and magnetic fields through microwaves to optical design. They will also include the use of electrical networks as a modelling medium.