由21世纪气候预估推断的日长的大气激励

IF 3.8 2区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Sigrid Böhm, David Salstein
{"title":"由21世纪气候预估推断的日长的大气激励","authors":"Sigrid Böhm,&nbsp;David Salstein","doi":"10.1029/2025JD043646","DOIUrl":null,"url":null,"abstract":"<p>On seasonal timescales, atmospheric angular momentum, mainly constituted by wind but also pressure effects, is known as the most important driver of Earth rotation variations reflected in those of the length of day. However, in connection with long-term climatic changes, we additionally anticipate secular trends resulting from shifts or changes in the intensity of atmospheric circulation. We investigate potential atmospheric transitions and their consequences for length of day using historical and 21st century simulations of a CMIP6 multimodel ensemble. The future projections used rely on five scenarios of differing greenhouse gas emission strengths and societal development. In each scenario, the resulting mean in the atmospheric angular momentum ensemble trajectory aligns with that of the projected surface temperature. The two pathways characterized by sustainability do not indicate significant centennial trends in atmospheric angular momentum and the respective length of day excitation. The scenarios with medium, high, and very high-emission intensity project gradual increases in atmospheric angular momentum, dominated by strengthening subtropical westerly jet streams. For the most intense scenario, this would correspond to an atmosphere-induced slowdown of the Earth's rotation, with a 0.43 ms cy<sup>−1</sup> increase in length of day, which amounts to about one-fifth of the slowdown due to the effect of tidal friction. In contrast, we identify no clear trend regarding the long-term change in the amplitude of the annual oscillation. Our results emphasize that climate change can affect Earth's rotation rate or, equivalently, the length of day through secular variations in atmospheric angular momentum.</p>","PeriodicalId":15986,"journal":{"name":"Journal of Geophysical Research: Atmospheres","volume":"130 12","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025JD043646","citationCount":"0","resultStr":"{\"title\":\"Atmospheric Excitation of Length of Day Inferred From 21st Century Climate Projections\",\"authors\":\"Sigrid Böhm,&nbsp;David Salstein\",\"doi\":\"10.1029/2025JD043646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>On seasonal timescales, atmospheric angular momentum, mainly constituted by wind but also pressure effects, is known as the most important driver of Earth rotation variations reflected in those of the length of day. However, in connection with long-term climatic changes, we additionally anticipate secular trends resulting from shifts or changes in the intensity of atmospheric circulation. We investigate potential atmospheric transitions and their consequences for length of day using historical and 21st century simulations of a CMIP6 multimodel ensemble. The future projections used rely on five scenarios of differing greenhouse gas emission strengths and societal development. In each scenario, the resulting mean in the atmospheric angular momentum ensemble trajectory aligns with that of the projected surface temperature. The two pathways characterized by sustainability do not indicate significant centennial trends in atmospheric angular momentum and the respective length of day excitation. The scenarios with medium, high, and very high-emission intensity project gradual increases in atmospheric angular momentum, dominated by strengthening subtropical westerly jet streams. For the most intense scenario, this would correspond to an atmosphere-induced slowdown of the Earth's rotation, with a 0.43 ms cy<sup>−1</sup> increase in length of day, which amounts to about one-fifth of the slowdown due to the effect of tidal friction. In contrast, we identify no clear trend regarding the long-term change in the amplitude of the annual oscillation. Our results emphasize that climate change can affect Earth's rotation rate or, equivalently, the length of day through secular variations in atmospheric angular momentum.</p>\",\"PeriodicalId\":15986,\"journal\":{\"name\":\"Journal of Geophysical Research: Atmospheres\",\"volume\":\"130 12\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025JD043646\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Atmospheres\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2025JD043646\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Atmospheres","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2025JD043646","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在季节时间尺度上,大气角动量是地球自转变化最重要的驱动因素,它主要由风的影响构成,也有气压的影响。然而,就长期气候变化而言,我们还预测了由大气环流强度的变化或变化引起的长期趋势。我们利用CMIP6多模式综合的历史和21世纪模拟研究了潜在的大气转变及其对日长的影响。所使用的未来预测基于五种不同温室气体排放强度和社会发展的情景。在每一种情况下,得到的大气角动量系综轨迹的平均值与预估的地表温度的平均值一致。以可持续性为特征的两种路径在大气角动量和各自的日激发长度方面没有显著的百年趋势。中、高、超高排放强度情景预测大气角动量逐渐增加,以副热带西风急流增强为主。在最强烈的情况下,这将对应于大气引起的地球自转减速,一天的长度增加0.43毫秒,这相当于潮汐摩擦效应导致的地球自转减速的五分之一。相反,我们没有发现关于年振荡振幅长期变化的明显趋势。我们的研究结果强调,气候变化可以通过大气角动量的长期变化影响地球的自转速度,或者相当于影响一天的长度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Atmospheric Excitation of Length of Day Inferred From 21st Century Climate Projections

Atmospheric Excitation of Length of Day Inferred From 21st Century Climate Projections

On seasonal timescales, atmospheric angular momentum, mainly constituted by wind but also pressure effects, is known as the most important driver of Earth rotation variations reflected in those of the length of day. However, in connection with long-term climatic changes, we additionally anticipate secular trends resulting from shifts or changes in the intensity of atmospheric circulation. We investigate potential atmospheric transitions and their consequences for length of day using historical and 21st century simulations of a CMIP6 multimodel ensemble. The future projections used rely on five scenarios of differing greenhouse gas emission strengths and societal development. In each scenario, the resulting mean in the atmospheric angular momentum ensemble trajectory aligns with that of the projected surface temperature. The two pathways characterized by sustainability do not indicate significant centennial trends in atmospheric angular momentum and the respective length of day excitation. The scenarios with medium, high, and very high-emission intensity project gradual increases in atmospheric angular momentum, dominated by strengthening subtropical westerly jet streams. For the most intense scenario, this would correspond to an atmosphere-induced slowdown of the Earth's rotation, with a 0.43 ms cy−1 increase in length of day, which amounts to about one-fifth of the slowdown due to the effect of tidal friction. In contrast, we identify no clear trend regarding the long-term change in the amplitude of the annual oscillation. Our results emphasize that climate change can affect Earth's rotation rate or, equivalently, the length of day through secular variations in atmospheric angular momentum.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Atmospheres
Journal of Geophysical Research: Atmospheres Earth and Planetary Sciences-Geophysics
CiteScore
7.30
自引率
11.40%
发文量
684
期刊介绍: JGR: Atmospheres publishes articles that advance and improve understanding of atmospheric properties and processes, including the interaction of the atmosphere with other components of the Earth system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信