支持稀疏的硬件:从开销到性能优势

Man Shi;Adrian Kneip;Nicolas Chauvaux;Jiacong Sun;Charlotte Frenkel;Marian Verhelst
{"title":"支持稀疏的硬件:从开销到性能优势","authors":"Man Shi;Adrian Kneip;Nicolas Chauvaux;Jiacong Sun;Charlotte Frenkel;Marian Verhelst","doi":"10.1109/MSSC.2025.3549709","DOIUrl":null,"url":null,"abstract":"As artificial intelligence (AI) continues to transform multiple sectors, its exponential growth in computational demands presents significant challenges for hardware infrastructure. This article examines sparsity, the prevalence of zeros in AI workloads, as a promising approach to address these challenges. While sparsity offers potential efficiency gains, its practical implementation requires careful consideration of hardware constraints and computational overheads. Therefore, this article cooperates with a virtual performance roofline model to analyze various sparsity techniques and their associated tradeoffs, aiming to bridge the gap between theoretical potential and practical implementation in AI accelerator design.","PeriodicalId":100636,"journal":{"name":"IEEE Solid-State Circuits Magazine","volume":"17 2","pages":"61-71"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sparsity-Aware Hardware: From Overheads to Performance Benefits\",\"authors\":\"Man Shi;Adrian Kneip;Nicolas Chauvaux;Jiacong Sun;Charlotte Frenkel;Marian Verhelst\",\"doi\":\"10.1109/MSSC.2025.3549709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As artificial intelligence (AI) continues to transform multiple sectors, its exponential growth in computational demands presents significant challenges for hardware infrastructure. This article examines sparsity, the prevalence of zeros in AI workloads, as a promising approach to address these challenges. While sparsity offers potential efficiency gains, its practical implementation requires careful consideration of hardware constraints and computational overheads. Therefore, this article cooperates with a virtual performance roofline model to analyze various sparsity techniques and their associated tradeoffs, aiming to bridge the gap between theoretical potential and practical implementation in AI accelerator design.\",\"PeriodicalId\":100636,\"journal\":{\"name\":\"IEEE Solid-State Circuits Magazine\",\"volume\":\"17 2\",\"pages\":\"61-71\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Solid-State Circuits Magazine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11044983/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Solid-State Circuits Magazine","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11044983/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着人工智能(AI)继续改变多个部门,其计算需求的指数增长对硬件基础设施提出了重大挑战。本文研究了稀疏性,即人工智能工作负载中普遍存在的零,作为解决这些挑战的一种有希望的方法。虽然稀疏性提供了潜在的效率提升,但它的实际实现需要仔细考虑硬件约束和计算开销。因此,本文结合虚拟性能屋顶线模型来分析各种稀疏性技术及其相关权衡,旨在弥合人工智能加速器设计中理论潜力与实际实现之间的差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparsity-Aware Hardware: From Overheads to Performance Benefits
As artificial intelligence (AI) continues to transform multiple sectors, its exponential growth in computational demands presents significant challenges for hardware infrastructure. This article examines sparsity, the prevalence of zeros in AI workloads, as a promising approach to address these challenges. While sparsity offers potential efficiency gains, its practical implementation requires careful consideration of hardware constraints and computational overheads. Therefore, this article cooperates with a virtual performance roofline model to analyze various sparsity techniques and their associated tradeoffs, aiming to bridge the gap between theoretical potential and practical implementation in AI accelerator design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信