高效数字机器学习加速器的设计与优化:架构选择、高效量化、稀疏性探索和系统集成技术概述

Wei Tang;Sung-Gun Cho;Jie-Fang Zhang;Zhengya Zhang
{"title":"高效数字机器学习加速器的设计与优化:架构选择、高效量化、稀疏性探索和系统集成技术概述","authors":"Wei Tang;Sung-Gun Cho;Jie-Fang Zhang;Zhengya Zhang","doi":"10.1109/MSSC.2025.3549361","DOIUrl":null,"url":null,"abstract":"Digital machine learning (ML) accelerators are popular and widely used. We provide an overview of the SIMD and systolic array architectures that form the foundation of many accelerator designs. The demand for higher compute density, energy efficiency, and scalability has been increasing. To address these needs, new ML accelerator designs have adopted a range of techniques, including advanced architectural design, more efficient quantization, exploiting data-level sparsity, and leveraging new integration technologies. For each of these techniques, we review the common approaches, identify the design tradeoffs, and discuss their implications.","PeriodicalId":100636,"journal":{"name":"IEEE Solid-State Circuits Magazine","volume":"17 2","pages":"30-38"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Optimization of Efficient Digital Machine Learning Accelerators: An overview of architecture choices, efficient quantization, sparsity exploration, and system integration techniques\",\"authors\":\"Wei Tang;Sung-Gun Cho;Jie-Fang Zhang;Zhengya Zhang\",\"doi\":\"10.1109/MSSC.2025.3549361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Digital machine learning (ML) accelerators are popular and widely used. We provide an overview of the SIMD and systolic array architectures that form the foundation of many accelerator designs. The demand for higher compute density, energy efficiency, and scalability has been increasing. To address these needs, new ML accelerator designs have adopted a range of techniques, including advanced architectural design, more efficient quantization, exploiting data-level sparsity, and leveraging new integration technologies. For each of these techniques, we review the common approaches, identify the design tradeoffs, and discuss their implications.\",\"PeriodicalId\":100636,\"journal\":{\"name\":\"IEEE Solid-State Circuits Magazine\",\"volume\":\"17 2\",\"pages\":\"30-38\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Solid-State Circuits Magazine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11044989/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Solid-State Circuits Magazine","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11044989/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数字机器学习(ML)加速器是流行和广泛使用的。我们概述了SIMD和收缩阵列架构,它们构成了许多加速器设计的基础。对更高的计算密度、能源效率和可伸缩性的需求一直在增加。为了满足这些需求,新的ML加速器设计采用了一系列技术,包括先进的架构设计、更有效的量化、利用数据级稀疏性和利用新的集成技术。对于每一种技术,我们回顾了常见的方法,确定了设计权衡,并讨论了它们的含义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and Optimization of Efficient Digital Machine Learning Accelerators: An overview of architecture choices, efficient quantization, sparsity exploration, and system integration techniques
Digital machine learning (ML) accelerators are popular and widely used. We provide an overview of the SIMD and systolic array architectures that form the foundation of many accelerator designs. The demand for higher compute density, energy efficiency, and scalability has been increasing. To address these needs, new ML accelerator designs have adopted a range of techniques, including advanced architectural design, more efficient quantization, exploiting data-level sparsity, and leveraging new integration technologies. For each of these techniques, we review the common approaches, identify the design tradeoffs, and discuss their implications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信