低成本气体传感器预部署校准框架:一种自适应环境参数模型

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Inesh Dheer;Shreyas Mehta;Srikar Somanchi;Alan Nelson;Abhishek Srivastava
{"title":"低成本气体传感器预部署校准框架:一种自适应环境参数模型","authors":"Inesh Dheer;Shreyas Mehta;Srikar Somanchi;Alan Nelson;Abhishek Srivastava","doi":"10.1109/LSENS.2025.3576152","DOIUrl":null,"url":null,"abstract":"Reliable toxic gas detection is vital for residential and industrial safety. While precise sensors are expensive, affordable ones face challenges of nonlinearity and environmental sensitivity, particularly from temperature (<inline-formula><tex-math>$T$</tex-math></inline-formula>) and humidity (<inline-formula><tex-math>$H$</tex-math></inline-formula>) effects. In this work, we present a novel predeployment calibration framework that accounts for these environmental factors on the sensor behavior, given by the resistance ratio (<inline-formula><tex-math>$R_{s}/R_{o}$</tex-math></inline-formula>) at constant gas concentration levels. The proposed method first refines the baseline resistance (<inline-formula><tex-math>$R_{s}$</tex-math></inline-formula>) estimation by fitting a power-law model to known gas concentrations and then applies a cubic regression model to capture the nonlinear effects of temperature and humidity on the <inline-formula><tex-math>$R_{s}/R_{o}$</tex-math></inline-formula> ratio. Cubic regression achieves superior accuracy (>5.8%) over lower order models while reducing over-fitting risks compared to higher order polynomials. It achieves 99.65% average accuracy, outperforming the 96.73% from standard libraries. This improved performance is particularly notable at low ppm levels, where direct <inline-formula><tex-math>$R_{s}$</tex-math></inline-formula> measurements are typically noisy and unstable. The enhanced stability and accuracy of the proposed method were validated over a continuous 90-min test period.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"9 7","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predeployment Calibration Framework for Low-Cost Gas Sensors: An Adaptive Environmental Parameter Model\",\"authors\":\"Inesh Dheer;Shreyas Mehta;Srikar Somanchi;Alan Nelson;Abhishek Srivastava\",\"doi\":\"10.1109/LSENS.2025.3576152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reliable toxic gas detection is vital for residential and industrial safety. While precise sensors are expensive, affordable ones face challenges of nonlinearity and environmental sensitivity, particularly from temperature (<inline-formula><tex-math>$T$</tex-math></inline-formula>) and humidity (<inline-formula><tex-math>$H$</tex-math></inline-formula>) effects. In this work, we present a novel predeployment calibration framework that accounts for these environmental factors on the sensor behavior, given by the resistance ratio (<inline-formula><tex-math>$R_{s}/R_{o}$</tex-math></inline-formula>) at constant gas concentration levels. The proposed method first refines the baseline resistance (<inline-formula><tex-math>$R_{s}$</tex-math></inline-formula>) estimation by fitting a power-law model to known gas concentrations and then applies a cubic regression model to capture the nonlinear effects of temperature and humidity on the <inline-formula><tex-math>$R_{s}/R_{o}$</tex-math></inline-formula> ratio. Cubic regression achieves superior accuracy (>5.8%) over lower order models while reducing over-fitting risks compared to higher order polynomials. It achieves 99.65% average accuracy, outperforming the 96.73% from standard libraries. This improved performance is particularly notable at low ppm levels, where direct <inline-formula><tex-math>$R_{s}$</tex-math></inline-formula> measurements are typically noisy and unstable. The enhanced stability and accuracy of the proposed method were validated over a continuous 90-min test period.\",\"PeriodicalId\":13014,\"journal\":{\"name\":\"IEEE Sensors Letters\",\"volume\":\"9 7\",\"pages\":\"1-4\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11022737/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11022737/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

可靠的有毒气体检测对住宅和工业安全至关重要。虽然精密传感器价格昂贵,但价格合理的传感器面临着非线性和环境敏感性的挑战,特别是来自温度(T$)和湿度(H$)的影响。在这项工作中,我们提出了一种新的预部署校准框架,该框架考虑了恒定气体浓度水平下电阻比($R_{s}/R_{o}$)对传感器行为的这些环境因素。该方法首先通过拟合已知气体浓度的幂律模型来改进基线电阻($R_{s}$)估计,然后应用三次回归模型来捕获温度和湿度对$R_{s}/R_{o}$比率的非线性影响。三次回归实现了优于低阶模型的精度(>5.8%),同时减少了与高阶多项式相比的过拟合风险。它的平均准确率达到99.65%,优于标准库的96.73%。这种改进的性能在低ppm水平下尤其显著,因为直接的R_{s}$测量通常是嘈杂和不稳定的。在连续90分钟的测试周期中验证了该方法的稳定性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predeployment Calibration Framework for Low-Cost Gas Sensors: An Adaptive Environmental Parameter Model
Reliable toxic gas detection is vital for residential and industrial safety. While precise sensors are expensive, affordable ones face challenges of nonlinearity and environmental sensitivity, particularly from temperature ($T$) and humidity ($H$) effects. In this work, we present a novel predeployment calibration framework that accounts for these environmental factors on the sensor behavior, given by the resistance ratio ($R_{s}/R_{o}$) at constant gas concentration levels. The proposed method first refines the baseline resistance ($R_{s}$) estimation by fitting a power-law model to known gas concentrations and then applies a cubic regression model to capture the nonlinear effects of temperature and humidity on the $R_{s}/R_{o}$ ratio. Cubic regression achieves superior accuracy (>5.8%) over lower order models while reducing over-fitting risks compared to higher order polynomials. It achieves 99.65% average accuracy, outperforming the 96.73% from standard libraries. This improved performance is particularly notable at low ppm levels, where direct $R_{s}$ measurements are typically noisy and unstable. The enhanced stability and accuracy of the proposed method were validated over a continuous 90-min test period.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信