Cpn-Tambara油田的分类

IF 0.8 2区 数学 Q2 MATHEMATICS
Noah Wisdom
{"title":"Cpn-Tambara油田的分类","authors":"Noah Wisdom","doi":"10.1016/j.jalgebra.2025.05.028","DOIUrl":null,"url":null,"abstract":"<div><div>Tambara functors arise in equivariant homotopy theory as the structure adherent to the homotopy groups of a coherently commutative equivariant ring spectrum. We show that if <em>k</em> is a field-like <span><math><msub><mrow><mi>C</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span>-Tambara functor, then <em>k</em> is the coinduction of a field-like <span><math><msub><mrow><mi>C</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msup></mrow></msub></math></span>-Tambara functor <em>ℓ</em> such that <span><math><mi>ℓ</mi><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msup></mrow></msub><mo>/</mo><mi>e</mi><mo>)</mo></math></span> is a field. If this field has characteristic other than <em>p</em>, we observe that <em>ℓ</em> must be a fixed-point Tambara functor, and if the characteristic is <em>p</em>, we determine all possible forms of <em>ℓ</em> through an analysis of the behavior of the Frobenius endomorphism and the trace of a <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-Galois extension.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"682 ","pages":"Pages 233-246"},"PeriodicalIF":0.8000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A classification of Cpn-Tambara fields\",\"authors\":\"Noah Wisdom\",\"doi\":\"10.1016/j.jalgebra.2025.05.028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Tambara functors arise in equivariant homotopy theory as the structure adherent to the homotopy groups of a coherently commutative equivariant ring spectrum. We show that if <em>k</em> is a field-like <span><math><msub><mrow><mi>C</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span>-Tambara functor, then <em>k</em> is the coinduction of a field-like <span><math><msub><mrow><mi>C</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msup></mrow></msub></math></span>-Tambara functor <em>ℓ</em> such that <span><math><mi>ℓ</mi><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msup></mrow></msub><mo>/</mo><mi>e</mi><mo>)</mo></math></span> is a field. If this field has characteristic other than <em>p</em>, we observe that <em>ℓ</em> must be a fixed-point Tambara functor, and if the characteristic is <em>p</em>, we determine all possible forms of <em>ℓ</em> through an analysis of the behavior of the Frobenius endomorphism and the trace of a <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-Galois extension.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"682 \",\"pages\":\"Pages 233-246\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325003333\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325003333","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在等变同伦理论中,Tambara函子作为一种结构出现在相干交换等变环谱的同伦群上。我们证明了如果k是类场的Cpn-Tambara函子,那么k是类场的Cpn-Tambara函子的协归纳,使得r (Cps/e)是一个场。如果这个场有非p的特征,我们观察到,如果特征是p,我们通过分析Frobenius自同态的行为和cp -伽罗瓦扩展的迹,确定了所有可能的形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A classification of Cpn-Tambara fields
Tambara functors arise in equivariant homotopy theory as the structure adherent to the homotopy groups of a coherently commutative equivariant ring spectrum. We show that if k is a field-like Cpn-Tambara functor, then k is the coinduction of a field-like Cps-Tambara functor such that (Cps/e) is a field. If this field has characteristic other than p, we observe that must be a fixed-point Tambara functor, and if the characteristic is p, we determine all possible forms of through an analysis of the behavior of the Frobenius endomorphism and the trace of a Cp-Galois extension.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信