实正交群表示的一类不变域的合理性

IF 0.8 2区 数学 Q2 MATHEMATICS
Evelyne Hubert, Martin Jalard
{"title":"实正交群表示的一类不变域的合理性","authors":"Evelyne Hubert,&nbsp;Martin Jalard","doi":"10.1016/j.jalgebra.2025.05.033","DOIUrl":null,"url":null,"abstract":"<div><div>We give a sufficient condition for the invariant field of a regular representation of <span><math><msub><mrow><mi>SO</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span> to be rational. We define a length <span><math><msup><mrow><mi>λ</mi></mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup></math></span> on representations of <span><math><msub><mrow><mi>SO</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span>, depending on their weights. This length is at most <span><math><mo>⌊</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></math></span>. If the representation of <span><math><msub><mrow><mi>SO</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span> or <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span> on <span><math><mi>V</mi></math></span> contains the standard representation <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> with multiplicity greater than this length, its invariant field is rational. To prove this, we construct a sequence of Seshadri slices. Each slice reduces the problem to a representation of a subgroup preserving the inequality between the multiplicity of the standard representation and the length.</div><div>We first treat the case of regular representations of positive length, which form the general case. We next emphasize the special case of representations of non-positive length, which correspond to the representations of <span><math><msub><mrow><mi>SO</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span> on matrices <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span>. For them, in addition to proving the rationality of the invariant field, we explicitly construct an algebraically independent set of generating invariants.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"682 ","pages":"Pages 109-130"},"PeriodicalIF":0.8000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rationality of the invariant field for a class of representations of the real orthogonal groups\",\"authors\":\"Evelyne Hubert,&nbsp;Martin Jalard\",\"doi\":\"10.1016/j.jalgebra.2025.05.033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We give a sufficient condition for the invariant field of a regular representation of <span><math><msub><mrow><mi>SO</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span> to be rational. We define a length <span><math><msup><mrow><mi>λ</mi></mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup></math></span> on representations of <span><math><msub><mrow><mi>SO</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span>, depending on their weights. This length is at most <span><math><mo>⌊</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></math></span>. If the representation of <span><math><msub><mrow><mi>SO</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span> or <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span> on <span><math><mi>V</mi></math></span> contains the standard representation <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> with multiplicity greater than this length, its invariant field is rational. To prove this, we construct a sequence of Seshadri slices. Each slice reduces the problem to a representation of a subgroup preserving the inequality between the multiplicity of the standard representation and the length.</div><div>We first treat the case of regular representations of positive length, which form the general case. We next emphasize the special case of representations of non-positive length, which correspond to the representations of <span><math><msub><mrow><mi>SO</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span> on matrices <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span>. For them, in addition to proving the rationality of the invariant field, we explicitly construct an algebraically independent set of generating invariants.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"682 \",\"pages\":\"Pages 109-130\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325003369\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325003369","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给出了SOn(R)正则表示的不变域是有理的一个充分条件。我们根据SOn(R)的权重定义了SOn(R)的表示的长度λ(n)。此长度最大为⌊n2⌋。如果SOn(R)或On(R)在V上的表示包含多重度大于此长度的标准表示Rn,则其不变域是有理域。为了证明这一点,我们构造了一个Seshadri切片序列。每个切片将问题简化为子群的表示,保留了标准表示的多重性和长度之间的不平等。我们首先处理正长度的正则表示的情况,它构成了一般情况。我们接下来强调非正长度表示的特殊情况,它对应于矩阵Mn,k(R)上SOn(R)的表示。对于它们,除了证明不变量域的合理性外,我们还显式构造了一个代数独立的生成不变量集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rationality of the invariant field for a class of representations of the real orthogonal groups
We give a sufficient condition for the invariant field of a regular representation of SOn(R) to be rational. We define a length λ(n) on representations of SOn(R), depending on their weights. This length is at most n2. If the representation of SOn(R) or On(R) on V contains the standard representation Rn with multiplicity greater than this length, its invariant field is rational. To prove this, we construct a sequence of Seshadri slices. Each slice reduces the problem to a representation of a subgroup preserving the inequality between the multiplicity of the standard representation and the length.
We first treat the case of regular representations of positive length, which form the general case. We next emphasize the special case of representations of non-positive length, which correspond to the representations of SOn(R) on matrices Mn,k(R). For them, in addition to proving the rationality of the invariant field, we explicitly construct an algebraically independent set of generating invariants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信