{"title":"实正交群表示的一类不变域的合理性","authors":"Evelyne Hubert, Martin Jalard","doi":"10.1016/j.jalgebra.2025.05.033","DOIUrl":null,"url":null,"abstract":"<div><div>We give a sufficient condition for the invariant field of a regular representation of <span><math><msub><mrow><mi>SO</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span> to be rational. We define a length <span><math><msup><mrow><mi>λ</mi></mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup></math></span> on representations of <span><math><msub><mrow><mi>SO</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span>, depending on their weights. This length is at most <span><math><mo>⌊</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></math></span>. If the representation of <span><math><msub><mrow><mi>SO</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span> or <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span> on <span><math><mi>V</mi></math></span> contains the standard representation <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> with multiplicity greater than this length, its invariant field is rational. To prove this, we construct a sequence of Seshadri slices. Each slice reduces the problem to a representation of a subgroup preserving the inequality between the multiplicity of the standard representation and the length.</div><div>We first treat the case of regular representations of positive length, which form the general case. We next emphasize the special case of representations of non-positive length, which correspond to the representations of <span><math><msub><mrow><mi>SO</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span> on matrices <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span>. For them, in addition to proving the rationality of the invariant field, we explicitly construct an algebraically independent set of generating invariants.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"682 ","pages":"Pages 109-130"},"PeriodicalIF":0.8000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rationality of the invariant field for a class of representations of the real orthogonal groups\",\"authors\":\"Evelyne Hubert, Martin Jalard\",\"doi\":\"10.1016/j.jalgebra.2025.05.033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We give a sufficient condition for the invariant field of a regular representation of <span><math><msub><mrow><mi>SO</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span> to be rational. We define a length <span><math><msup><mrow><mi>λ</mi></mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msup></math></span> on representations of <span><math><msub><mrow><mi>SO</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span>, depending on their weights. This length is at most <span><math><mo>⌊</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo></math></span>. If the representation of <span><math><msub><mrow><mi>SO</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span> or <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span> on <span><math><mi>V</mi></math></span> contains the standard representation <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> with multiplicity greater than this length, its invariant field is rational. To prove this, we construct a sequence of Seshadri slices. Each slice reduces the problem to a representation of a subgroup preserving the inequality between the multiplicity of the standard representation and the length.</div><div>We first treat the case of regular representations of positive length, which form the general case. We next emphasize the special case of representations of non-positive length, which correspond to the representations of <span><math><msub><mrow><mi>SO</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span> on matrices <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>(</mo><mi>R</mi><mo>)</mo></math></span>. For them, in addition to proving the rationality of the invariant field, we explicitly construct an algebraically independent set of generating invariants.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"682 \",\"pages\":\"Pages 109-130\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325003369\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325003369","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Rationality of the invariant field for a class of representations of the real orthogonal groups
We give a sufficient condition for the invariant field of a regular representation of to be rational. We define a length on representations of , depending on their weights. This length is at most . If the representation of or on contains the standard representation with multiplicity greater than this length, its invariant field is rational. To prove this, we construct a sequence of Seshadri slices. Each slice reduces the problem to a representation of a subgroup preserving the inequality between the multiplicity of the standard representation and the length.
We first treat the case of regular representations of positive length, which form the general case. We next emphasize the special case of representations of non-positive length, which correspond to the representations of on matrices . For them, in addition to proving the rationality of the invariant field, we explicitly construct an algebraically independent set of generating invariants.
期刊介绍:
The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.