一种确定多目标整数网络流问题所有支持有效解的输出多项式时间算法

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
David Könen, Michael Stiglmayr
{"title":"一种确定多目标整数网络流问题所有支持有效解的输出多项式时间算法","authors":"David Könen,&nbsp;Michael Stiglmayr","doi":"10.1016/j.dam.2025.06.001","DOIUrl":null,"url":null,"abstract":"<div><div>This paper addresses the problem of enumerating all <em>supported efficient solutions</em> for a linear multi-objective integer minimum cost flow problem (MOIMCF). It derives an output-polynomial time algorithm to determine all supported efficient solutions for MOIMCF problems. This is the first approach to solve this general problem in output-polynomial time. Moreover, we prove that the existence of an output-polynomial time algorithm to determine all weakly supported nondominated vectors (or all weakly supported efficient solutions) for a MOIMCF problem with a fixed number of <span><math><mrow><mi>d</mi><mo>≥</mo><mn>3</mn></mrow></math></span> objectives can be excluded unless <span><math><mrow><mi>P</mi><mo>=</mo><mi>NP</mi></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"376 ","pages":"Pages 1-14"},"PeriodicalIF":1.0000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An output-polynomial time algorithm to determine all supported efficient solutions for multi-objective integer network flow problems\",\"authors\":\"David Könen,&nbsp;Michael Stiglmayr\",\"doi\":\"10.1016/j.dam.2025.06.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper addresses the problem of enumerating all <em>supported efficient solutions</em> for a linear multi-objective integer minimum cost flow problem (MOIMCF). It derives an output-polynomial time algorithm to determine all supported efficient solutions for MOIMCF problems. This is the first approach to solve this general problem in output-polynomial time. Moreover, we prove that the existence of an output-polynomial time algorithm to determine all weakly supported nondominated vectors (or all weakly supported efficient solutions) for a MOIMCF problem with a fixed number of <span><math><mrow><mi>d</mi><mo>≥</mo><mn>3</mn></mrow></math></span> objectives can be excluded unless <span><math><mrow><mi>P</mi><mo>=</mo><mi>NP</mi></mrow></math></span>.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"376 \",\"pages\":\"Pages 1-14\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25003166\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25003166","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了线性多目标整数最小成本流问题的所有支持有效解的枚举问题。它导出了一个输出多项式时间算法来确定MOIMCF问题的所有支持的有效解。这是在输出多项式时间内解决这个一般问题的第一种方法。此外,我们证明了一个输出多项式时间算法的存在性,该算法可以排除具有固定数量d≥3个目标的MOIMCF问题的所有弱支持非支配向量(或所有弱支持有效解),除非P=NP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An output-polynomial time algorithm to determine all supported efficient solutions for multi-objective integer network flow problems
This paper addresses the problem of enumerating all supported efficient solutions for a linear multi-objective integer minimum cost flow problem (MOIMCF). It derives an output-polynomial time algorithm to determine all supported efficient solutions for MOIMCF problems. This is the first approach to solve this general problem in output-polynomial time. Moreover, we prove that the existence of an output-polynomial time algorithm to determine all weakly supported nondominated vectors (or all weakly supported efficient solutions) for a MOIMCF problem with a fixed number of d3 objectives can be excluded unless P=NP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信