{"title":"加布里埃尔的调和Hardy空间问题","authors":"Suman Das","doi":"10.1016/j.jmaa.2025.129816","DOIUrl":null,"url":null,"abstract":"<div><div>We obtain inequalities of the form<span><span><span><math><munder><mo>∫</mo><mrow><mi>C</mi></mrow></munder><mo>|</mo><mi>f</mi><mo>(</mo><mi>z</mi><mo>)</mo><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup><mspace></mspace><mo>|</mo><mi>d</mi><mi>z</mi><mo>|</mo><mo>≤</mo><mi>A</mi><mo>(</mo><mi>p</mi><mo>)</mo><munder><mo>∫</mo><mrow><mi>T</mi></mrow></munder><mo>|</mo><mi>f</mi><mo>(</mo><mi>z</mi><mo>)</mo><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup><mspace></mspace><mo>|</mo><mi>d</mi><mi>z</mi><mo>|</mo><mspace></mspace><mo>(</mo><mi>p</mi><mo>></mo><mn>1</mn><mo>)</mo><mo>,</mo></math></span></span></span> where <em>f</em> is harmonic in the unit disk <span><math><mi>D</mi></math></span>, <span><math><mi>T</mi></math></span> is the unit circle, and <em>C</em> is any convex curve in <span><math><mi>D</mi></math></span>. Such inequalities were originally studied for analytic functions by R.M. Gabriel (1928) <span><span>[11]</span></span>. We show that, unlike in the case of analytic functions, such inequalities cannot be true in general for <span><math><mn>0</mn><mo><</mo><mi>p</mi><mo>≤</mo><mn>1</mn></math></span>. Therefore, we produce an inequality of a slightly different type, which deals with the case <span><math><mn>0</mn><mo><</mo><mi>p</mi><mo><</mo><mn>1</mn></math></span>. An example is given to show that this result is “best possible”, in the sense that an extension to <span><math><mi>p</mi><mo>=</mo><mn>1</mn></math></span> fails. Then we consider the special case when <em>C</em> is a circle, and prove a refined result that curiously holds for <span><math><mi>p</mi><mo>=</mo><mn>1</mn></math></span> as well. We conclude with a maximal theorem which has potential applications.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 2","pages":"Article 129816"},"PeriodicalIF":1.2000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gabriel's problem for harmonic Hardy spaces\",\"authors\":\"Suman Das\",\"doi\":\"10.1016/j.jmaa.2025.129816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We obtain inequalities of the form<span><span><span><math><munder><mo>∫</mo><mrow><mi>C</mi></mrow></munder><mo>|</mo><mi>f</mi><mo>(</mo><mi>z</mi><mo>)</mo><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup><mspace></mspace><mo>|</mo><mi>d</mi><mi>z</mi><mo>|</mo><mo>≤</mo><mi>A</mi><mo>(</mo><mi>p</mi><mo>)</mo><munder><mo>∫</mo><mrow><mi>T</mi></mrow></munder><mo>|</mo><mi>f</mi><mo>(</mo><mi>z</mi><mo>)</mo><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup><mspace></mspace><mo>|</mo><mi>d</mi><mi>z</mi><mo>|</mo><mspace></mspace><mo>(</mo><mi>p</mi><mo>></mo><mn>1</mn><mo>)</mo><mo>,</mo></math></span></span></span> where <em>f</em> is harmonic in the unit disk <span><math><mi>D</mi></math></span>, <span><math><mi>T</mi></math></span> is the unit circle, and <em>C</em> is any convex curve in <span><math><mi>D</mi></math></span>. Such inequalities were originally studied for analytic functions by R.M. Gabriel (1928) <span><span>[11]</span></span>. We show that, unlike in the case of analytic functions, such inequalities cannot be true in general for <span><math><mn>0</mn><mo><</mo><mi>p</mi><mo>≤</mo><mn>1</mn></math></span>. Therefore, we produce an inequality of a slightly different type, which deals with the case <span><math><mn>0</mn><mo><</mo><mi>p</mi><mo><</mo><mn>1</mn></math></span>. An example is given to show that this result is “best possible”, in the sense that an extension to <span><math><mi>p</mi><mo>=</mo><mn>1</mn></math></span> fails. Then we consider the special case when <em>C</em> is a circle, and prove a refined result that curiously holds for <span><math><mi>p</mi><mo>=</mo><mn>1</mn></math></span> as well. We conclude with a maximal theorem which has potential applications.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"552 2\",\"pages\":\"Article 129816\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25005979\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25005979","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
We obtain inequalities of the form where f is harmonic in the unit disk , is the unit circle, and C is any convex curve in . Such inequalities were originally studied for analytic functions by R.M. Gabriel (1928) [11]. We show that, unlike in the case of analytic functions, such inequalities cannot be true in general for . Therefore, we produce an inequality of a slightly different type, which deals with the case . An example is given to show that this result is “best possible”, in the sense that an extension to fails. Then we consider the special case when C is a circle, and prove a refined result that curiously holds for as well. We conclude with a maximal theorem which has potential applications.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.