Gerardo M. Escolano , Antonio M. Peralta , Armando R. Villena
{"title":"算子交换性的保子","authors":"Gerardo M. Escolano , Antonio M. Peralta , Armando R. Villena","doi":"10.1016/j.jmaa.2025.129796","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>M</mi></math></span> and <span><math><mi>J</mi></math></span> be JBW<sup>⁎</sup>-algebras admitting no central summands of type <span><math><msub><mrow><mi>I</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>I</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, and let <span><math><mi>Φ</mi><mo>:</mo><mi>M</mi><mo>→</mo><mi>J</mi></math></span> be a linear bijection preserving operator commutativity in both directions, that is,<span><span><span><math><mo>[</mo><mi>x</mi><mo>,</mo><mi>M</mi><mo>,</mo><mi>y</mi><mo>]</mo><mo>=</mo><mn>0</mn><mo>⇔</mo><mo>[</mo><mi>Φ</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mi>J</mi><mo>,</mo><mi>Φ</mi><mo>(</mo><mi>y</mi><mo>)</mo><mo>]</mo><mo>=</mo><mn>0</mn><mo>,</mo></math></span></span></span> for all <span><math><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><mi>M</mi></math></span>, where the associator of three elements <span><math><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi></math></span> in <span><math><mi>M</mi></math></span> is defined by <span><math><mo>[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>]</mo><mo>:</mo><mo>=</mo><mo>(</mo><mi>a</mi><mo>∘</mo><mi>b</mi><mo>)</mo><mo>∘</mo><mi>c</mi><mo>−</mo><mo>(</mo><mi>c</mi><mo>∘</mo><mi>b</mi><mo>)</mo><mo>∘</mo><mi>a</mi></math></span>. We prove that under these conditions there exist a unique invertible central element <span><math><msub><mrow><mi>z</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> in <span><math><mi>J</mi></math></span>, a unique Jordan isomorphism <span><math><mi>J</mi><mo>:</mo><mi>M</mi><mo>→</mo><mi>J</mi></math></span>, and a unique linear mapping <em>β</em> from <span><math><mi>M</mi></math></span> to the centre of <span><math><mi>J</mi></math></span> satisfying<span><span><span><math><mi>Φ</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∘</mo><mi>J</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>+</mo><mi>β</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo></math></span></span></span> for all <span><math><mi>x</mi><mo>∈</mo><mi>M</mi></math></span>. Furthermore, if Φ is a symmetric mapping (i.e., <span><math><mi>Φ</mi><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo><mo>=</mo><mi>Φ</mi><msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> for all <span><math><mi>x</mi><mo>∈</mo><mi>M</mi></math></span>), the element <span><math><msub><mrow><mi>z</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is self-adjoint, <em>J</em> is a Jordan <sup>⁎</sup>-isomorphism, and <em>β</em> is a <sup>⁎</sup>-symmetric mapping too.</div><div>In case that <span><math><mi>J</mi></math></span> is a JBW<sup>⁎</sup>-algebra admitting no central summands of type <span><math><msub><mrow><mi>I</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, we also address the problem of describing the form of all symmetric bilinear mappings <span><math><mi>B</mi><mo>:</mo><mi>J</mi><mo>×</mo><mi>J</mi><mo>→</mo><mi>J</mi></math></span> whose trace is associating (i.e., <span><math><mo>[</mo><mi>B</mi><mo>(</mo><mi>a</mi><mo>,</mo><mi>a</mi><mo>)</mo><mo>,</mo><mi>b</mi><mo>,</mo><mi>a</mi><mo>]</mo><mo>=</mo><mn>0</mn></math></span>, for all <span><math><mi>a</mi><mo>,</mo><mi>b</mi><mo>∈</mo><mi>J</mi></math></span>) providing a complete solution to it. We also determine the form of all associating linear maps on <span><math><mi>J</mi></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 2","pages":"Article 129796"},"PeriodicalIF":1.2000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preservers of operator commutativity\",\"authors\":\"Gerardo M. Escolano , Antonio M. Peralta , Armando R. Villena\",\"doi\":\"10.1016/j.jmaa.2025.129796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>M</mi></math></span> and <span><math><mi>J</mi></math></span> be JBW<sup>⁎</sup>-algebras admitting no central summands of type <span><math><msub><mrow><mi>I</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>I</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, and let <span><math><mi>Φ</mi><mo>:</mo><mi>M</mi><mo>→</mo><mi>J</mi></math></span> be a linear bijection preserving operator commutativity in both directions, that is,<span><span><span><math><mo>[</mo><mi>x</mi><mo>,</mo><mi>M</mi><mo>,</mo><mi>y</mi><mo>]</mo><mo>=</mo><mn>0</mn><mo>⇔</mo><mo>[</mo><mi>Φ</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mi>J</mi><mo>,</mo><mi>Φ</mi><mo>(</mo><mi>y</mi><mo>)</mo><mo>]</mo><mo>=</mo><mn>0</mn><mo>,</mo></math></span></span></span> for all <span><math><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><mi>M</mi></math></span>, where the associator of three elements <span><math><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi></math></span> in <span><math><mi>M</mi></math></span> is defined by <span><math><mo>[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>]</mo><mo>:</mo><mo>=</mo><mo>(</mo><mi>a</mi><mo>∘</mo><mi>b</mi><mo>)</mo><mo>∘</mo><mi>c</mi><mo>−</mo><mo>(</mo><mi>c</mi><mo>∘</mo><mi>b</mi><mo>)</mo><mo>∘</mo><mi>a</mi></math></span>. We prove that under these conditions there exist a unique invertible central element <span><math><msub><mrow><mi>z</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> in <span><math><mi>J</mi></math></span>, a unique Jordan isomorphism <span><math><mi>J</mi><mo>:</mo><mi>M</mi><mo>→</mo><mi>J</mi></math></span>, and a unique linear mapping <em>β</em> from <span><math><mi>M</mi></math></span> to the centre of <span><math><mi>J</mi></math></span> satisfying<span><span><span><math><mi>Φ</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∘</mo><mi>J</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>+</mo><mi>β</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo></math></span></span></span> for all <span><math><mi>x</mi><mo>∈</mo><mi>M</mi></math></span>. Furthermore, if Φ is a symmetric mapping (i.e., <span><math><mi>Φ</mi><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo><mo>=</mo><mi>Φ</mi><msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> for all <span><math><mi>x</mi><mo>∈</mo><mi>M</mi></math></span>), the element <span><math><msub><mrow><mi>z</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is self-adjoint, <em>J</em> is a Jordan <sup>⁎</sup>-isomorphism, and <em>β</em> is a <sup>⁎</sup>-symmetric mapping too.</div><div>In case that <span><math><mi>J</mi></math></span> is a JBW<sup>⁎</sup>-algebra admitting no central summands of type <span><math><msub><mrow><mi>I</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, we also address the problem of describing the form of all symmetric bilinear mappings <span><math><mi>B</mi><mo>:</mo><mi>J</mi><mo>×</mo><mi>J</mi><mo>→</mo><mi>J</mi></math></span> whose trace is associating (i.e., <span><math><mo>[</mo><mi>B</mi><mo>(</mo><mi>a</mi><mo>,</mo><mi>a</mi><mo>)</mo><mo>,</mo><mi>b</mi><mo>,</mo><mi>a</mi><mo>]</mo><mo>=</mo><mn>0</mn></math></span>, for all <span><math><mi>a</mi><mo>,</mo><mi>b</mi><mo>∈</mo><mi>J</mi></math></span>) providing a complete solution to it. We also determine the form of all associating linear maps on <span><math><mi>J</mi></math></span>.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"552 2\",\"pages\":\"Article 129796\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25005773\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25005773","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Let and be JBW⁎-algebras admitting no central summands of type and , and let be a linear bijection preserving operator commutativity in both directions, that is, for all , where the associator of three elements in is defined by . We prove that under these conditions there exist a unique invertible central element in , a unique Jordan isomorphism , and a unique linear mapping β from to the centre of satisfying for all . Furthermore, if Φ is a symmetric mapping (i.e., for all ), the element is self-adjoint, J is a Jordan ⁎-isomorphism, and β is a ⁎-symmetric mapping too.
In case that is a JBW⁎-algebra admitting no central summands of type , we also address the problem of describing the form of all symmetric bilinear mappings whose trace is associating (i.e., , for all ) providing a complete solution to it. We also determine the form of all associating linear maps on .
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.