算子交换性的保子

IF 1.2 3区 数学 Q1 MATHEMATICS
Gerardo M. Escolano , Antonio M. Peralta , Armando R. Villena
{"title":"算子交换性的保子","authors":"Gerardo M. Escolano ,&nbsp;Antonio M. Peralta ,&nbsp;Armando R. Villena","doi":"10.1016/j.jmaa.2025.129796","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>M</mi></math></span> and <span><math><mi>J</mi></math></span> be JBW<sup>⁎</sup>-algebras admitting no central summands of type <span><math><msub><mrow><mi>I</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>I</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, and let <span><math><mi>Φ</mi><mo>:</mo><mi>M</mi><mo>→</mo><mi>J</mi></math></span> be a linear bijection preserving operator commutativity in both directions, that is,<span><span><span><math><mo>[</mo><mi>x</mi><mo>,</mo><mi>M</mi><mo>,</mo><mi>y</mi><mo>]</mo><mo>=</mo><mn>0</mn><mo>⇔</mo><mo>[</mo><mi>Φ</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mi>J</mi><mo>,</mo><mi>Φ</mi><mo>(</mo><mi>y</mi><mo>)</mo><mo>]</mo><mo>=</mo><mn>0</mn><mo>,</mo></math></span></span></span> for all <span><math><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><mi>M</mi></math></span>, where the associator of three elements <span><math><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi></math></span> in <span><math><mi>M</mi></math></span> is defined by <span><math><mo>[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>]</mo><mo>:</mo><mo>=</mo><mo>(</mo><mi>a</mi><mo>∘</mo><mi>b</mi><mo>)</mo><mo>∘</mo><mi>c</mi><mo>−</mo><mo>(</mo><mi>c</mi><mo>∘</mo><mi>b</mi><mo>)</mo><mo>∘</mo><mi>a</mi></math></span>. We prove that under these conditions there exist a unique invertible central element <span><math><msub><mrow><mi>z</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> in <span><math><mi>J</mi></math></span>, a unique Jordan isomorphism <span><math><mi>J</mi><mo>:</mo><mi>M</mi><mo>→</mo><mi>J</mi></math></span>, and a unique linear mapping <em>β</em> from <span><math><mi>M</mi></math></span> to the centre of <span><math><mi>J</mi></math></span> satisfying<span><span><span><math><mi>Φ</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∘</mo><mi>J</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>+</mo><mi>β</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo></math></span></span></span> for all <span><math><mi>x</mi><mo>∈</mo><mi>M</mi></math></span>. Furthermore, if Φ is a symmetric mapping (i.e., <span><math><mi>Φ</mi><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo><mo>=</mo><mi>Φ</mi><msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> for all <span><math><mi>x</mi><mo>∈</mo><mi>M</mi></math></span>), the element <span><math><msub><mrow><mi>z</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is self-adjoint, <em>J</em> is a Jordan <sup>⁎</sup>-isomorphism, and <em>β</em> is a <sup>⁎</sup>-symmetric mapping too.</div><div>In case that <span><math><mi>J</mi></math></span> is a JBW<sup>⁎</sup>-algebra admitting no central summands of type <span><math><msub><mrow><mi>I</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, we also address the problem of describing the form of all symmetric bilinear mappings <span><math><mi>B</mi><mo>:</mo><mi>J</mi><mo>×</mo><mi>J</mi><mo>→</mo><mi>J</mi></math></span> whose trace is associating (i.e., <span><math><mo>[</mo><mi>B</mi><mo>(</mo><mi>a</mi><mo>,</mo><mi>a</mi><mo>)</mo><mo>,</mo><mi>b</mi><mo>,</mo><mi>a</mi><mo>]</mo><mo>=</mo><mn>0</mn></math></span>, for all <span><math><mi>a</mi><mo>,</mo><mi>b</mi><mo>∈</mo><mi>J</mi></math></span>) providing a complete solution to it. We also determine the form of all associating linear maps on <span><math><mi>J</mi></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 2","pages":"Article 129796"},"PeriodicalIF":1.2000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preservers of operator commutativity\",\"authors\":\"Gerardo M. Escolano ,&nbsp;Antonio M. Peralta ,&nbsp;Armando R. Villena\",\"doi\":\"10.1016/j.jmaa.2025.129796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>M</mi></math></span> and <span><math><mi>J</mi></math></span> be JBW<sup>⁎</sup>-algebras admitting no central summands of type <span><math><msub><mrow><mi>I</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>I</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, and let <span><math><mi>Φ</mi><mo>:</mo><mi>M</mi><mo>→</mo><mi>J</mi></math></span> be a linear bijection preserving operator commutativity in both directions, that is,<span><span><span><math><mo>[</mo><mi>x</mi><mo>,</mo><mi>M</mi><mo>,</mo><mi>y</mi><mo>]</mo><mo>=</mo><mn>0</mn><mo>⇔</mo><mo>[</mo><mi>Φ</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mi>J</mi><mo>,</mo><mi>Φ</mi><mo>(</mo><mi>y</mi><mo>)</mo><mo>]</mo><mo>=</mo><mn>0</mn><mo>,</mo></math></span></span></span> for all <span><math><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><mi>M</mi></math></span>, where the associator of three elements <span><math><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi></math></span> in <span><math><mi>M</mi></math></span> is defined by <span><math><mo>[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>]</mo><mo>:</mo><mo>=</mo><mo>(</mo><mi>a</mi><mo>∘</mo><mi>b</mi><mo>)</mo><mo>∘</mo><mi>c</mi><mo>−</mo><mo>(</mo><mi>c</mi><mo>∘</mo><mi>b</mi><mo>)</mo><mo>∘</mo><mi>a</mi></math></span>. We prove that under these conditions there exist a unique invertible central element <span><math><msub><mrow><mi>z</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> in <span><math><mi>J</mi></math></span>, a unique Jordan isomorphism <span><math><mi>J</mi><mo>:</mo><mi>M</mi><mo>→</mo><mi>J</mi></math></span>, and a unique linear mapping <em>β</em> from <span><math><mi>M</mi></math></span> to the centre of <span><math><mi>J</mi></math></span> satisfying<span><span><span><math><mi>Φ</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∘</mo><mi>J</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>+</mo><mi>β</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo></math></span></span></span> for all <span><math><mi>x</mi><mo>∈</mo><mi>M</mi></math></span>. Furthermore, if Φ is a symmetric mapping (i.e., <span><math><mi>Φ</mi><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo><mo>=</mo><mi>Φ</mi><msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> for all <span><math><mi>x</mi><mo>∈</mo><mi>M</mi></math></span>), the element <span><math><msub><mrow><mi>z</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is self-adjoint, <em>J</em> is a Jordan <sup>⁎</sup>-isomorphism, and <em>β</em> is a <sup>⁎</sup>-symmetric mapping too.</div><div>In case that <span><math><mi>J</mi></math></span> is a JBW<sup>⁎</sup>-algebra admitting no central summands of type <span><math><msub><mrow><mi>I</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, we also address the problem of describing the form of all symmetric bilinear mappings <span><math><mi>B</mi><mo>:</mo><mi>J</mi><mo>×</mo><mi>J</mi><mo>→</mo><mi>J</mi></math></span> whose trace is associating (i.e., <span><math><mo>[</mo><mi>B</mi><mo>(</mo><mi>a</mi><mo>,</mo><mi>a</mi><mo>)</mo><mo>,</mo><mi>b</mi><mo>,</mo><mi>a</mi><mo>]</mo><mo>=</mo><mn>0</mn></math></span>, for all <span><math><mi>a</mi><mo>,</mo><mi>b</mi><mo>∈</mo><mi>J</mi></math></span>) providing a complete solution to it. We also determine the form of all associating linear maps on <span><math><mi>J</mi></math></span>.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"552 2\",\"pages\":\"Article 129796\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25005773\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25005773","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设M和J是不允许有I1和I2型中心和的JBW -代数,设Φ:M→J是一个在两个方向上保持算子交换性的线性双射,即[x,M,y]=0⇔[Φ(x),J,Φ(y)]=0,对于所有x,y∈M,其中M中三个元素a,b,c的结合子定义为[a,b,c]:=(a°b)°c - (c°b)°a。我们证明在这些条件下,对于所有x∈M, J中存在唯一的可逆中心元素z0,唯一的约当同构J:M→J,以及从M到J中心的唯一的线性映射β satisfyingΦ(x)=z0°J(x)+β(x)。更进一步,如果Φ是一个对称映射(即Φ(x) =Φ(x)对于所有x∈M),则元素z0是自伴随的,J是一个Jordan同构,β也是一个对称映射。在J是一个不允许有I1型中心和的JBW -代数的情况下,我们还讨论了描述所有对称双线性映射B:J×J→J的形式的问题,其迹是关联的(即,[B(a,a), B,a]=0,对于所有a, B∈J),并给出了它的完全解。我们还确定了J上所有相关线性映射的形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preservers of operator commutativity
Let M and J be JBW-algebras admitting no central summands of type I1 and I2, and let Φ:MJ be a linear bijection preserving operator commutativity in both directions, that is,[x,M,y]=0[Φ(x),J,Φ(y)]=0, for all x,yM, where the associator of three elements a,b,c in M is defined by [a,b,c]:=(ab)c(cb)a. We prove that under these conditions there exist a unique invertible central element z0 in J, a unique Jordan isomorphism J:MJ, and a unique linear mapping β from M to the centre of J satisfyingΦ(x)=z0J(x)+β(x), for all xM. Furthermore, if Φ is a symmetric mapping (i.e., Φ(x)=Φ(x) for all xM), the element z0 is self-adjoint, J is a Jordan -isomorphism, and β is a -symmetric mapping too.
In case that J is a JBW-algebra admitting no central summands of type I1, we also address the problem of describing the form of all symmetric bilinear mappings B:J×JJ whose trace is associating (i.e., [B(a,a),b,a]=0, for all a,bJ) providing a complete solution to it. We also determine the form of all associating linear maps on J.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信