Xinyi Hu , Maria Varkanitsa , Emerson Kropp , Margrit Betke , Prakash Ishwar , Swathi Kiran
{"title":"使用多模态机器学习方法预测失语严重程度","authors":"Xinyi Hu , Maria Varkanitsa , Emerson Kropp , Margrit Betke , Prakash Ishwar , Swathi Kiran","doi":"10.1016/j.neuroimage.2025.121300","DOIUrl":null,"url":null,"abstract":"<div><div>The present study examined an integrated multiple neuroimaging modality (T1 structural, Diffusion Tensor Imaging (DTI), and resting-state FMRI (rsFMRI)) to predict aphasia severity using Western Aphasia Battery-Revised Aphasia Quotient (WAB-R AQ) in 76 individuals with post-stroke aphasia. We employed Support Vector Regression (SVR) and Random Forest (RF) models with supervised feature selection and a stacked feature prediction approach. The SVR model outperformed RF, achieving an average root mean square error (RMSE) of <span><math><mrow><mn>16</mn><mo>.</mo><mn>38</mn><mspace></mspace><mo>±</mo><mspace></mspace><mn>5</mn><mo>.</mo><mn>57</mn></mrow></math></span>, Pearson’s correlation coefficient (<span><math><mi>r</mi></math></span>) of <span><math><mrow><mn>0</mn><mo>.</mo><mn>70</mn><mspace></mspace><mo>±</mo><mspace></mspace><mn>0</mn><mo>.</mo><mn>13</mn></mrow></math></span>, and mean absolute error (MAE) of <span><math><mrow><mn>12</mn><mo>.</mo><mn>67</mn><mspace></mspace><mo>±</mo><mspace></mspace><mn>3</mn><mo>.</mo><mn>27</mn></mrow></math></span>, compared to RF’s RMSE of <span><math><mrow><mn>18</mn><mo>.</mo><mn>41</mn><mspace></mspace><mo>±</mo><mspace></mspace><mn>4</mn><mo>.</mo><mn>34</mn></mrow></math></span>, <span><math><mi>r</mi></math></span> of <span><math><mrow><mn>0</mn><mo>.</mo><mn>66</mn><mspace></mspace><mo>±</mo><mspace></mspace><mn>0</mn><mo>.</mo><mn>15</mn></mrow></math></span>, and MAE of <span><math><mrow><mn>14</mn><mo>.</mo><mn>64</mn><mspace></mspace><mo>±</mo><mspace></mspace><mn>3</mn><mo>.</mo><mn>04</mn></mrow></math></span>. Resting-state neural activity and structural integrity emerged as crucial predictors of aphasia severity, appearing in the top 20% of predictor combinations for both SVR and RF. Finally, the feature selection method revealed that functional connectivity in both hemispheres and between homologous language areas is critical for predicting language outcomes in patients with aphasia. The statistically significant difference in performance between the model using only single modality and the optimal multi-modal SVR/RF model (which included both resting-state connectivity and structural information) underscores that aphasia severity is influenced by factors beyond lesion location and volume. These findings suggest that integrating multiple neuroimaging modalities enhances the prediction of language outcomes in aphasia beyond lesion characteristics alone, offering insights that could inform personalized rehabilitation strategies.</div></div>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":"317 ","pages":"Article 121300"},"PeriodicalIF":4.5000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aphasia severity prediction using a multi-modal machine learning approach\",\"authors\":\"Xinyi Hu , Maria Varkanitsa , Emerson Kropp , Margrit Betke , Prakash Ishwar , Swathi Kiran\",\"doi\":\"10.1016/j.neuroimage.2025.121300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The present study examined an integrated multiple neuroimaging modality (T1 structural, Diffusion Tensor Imaging (DTI), and resting-state FMRI (rsFMRI)) to predict aphasia severity using Western Aphasia Battery-Revised Aphasia Quotient (WAB-R AQ) in 76 individuals with post-stroke aphasia. We employed Support Vector Regression (SVR) and Random Forest (RF) models with supervised feature selection and a stacked feature prediction approach. The SVR model outperformed RF, achieving an average root mean square error (RMSE) of <span><math><mrow><mn>16</mn><mo>.</mo><mn>38</mn><mspace></mspace><mo>±</mo><mspace></mspace><mn>5</mn><mo>.</mo><mn>57</mn></mrow></math></span>, Pearson’s correlation coefficient (<span><math><mi>r</mi></math></span>) of <span><math><mrow><mn>0</mn><mo>.</mo><mn>70</mn><mspace></mspace><mo>±</mo><mspace></mspace><mn>0</mn><mo>.</mo><mn>13</mn></mrow></math></span>, and mean absolute error (MAE) of <span><math><mrow><mn>12</mn><mo>.</mo><mn>67</mn><mspace></mspace><mo>±</mo><mspace></mspace><mn>3</mn><mo>.</mo><mn>27</mn></mrow></math></span>, compared to RF’s RMSE of <span><math><mrow><mn>18</mn><mo>.</mo><mn>41</mn><mspace></mspace><mo>±</mo><mspace></mspace><mn>4</mn><mo>.</mo><mn>34</mn></mrow></math></span>, <span><math><mi>r</mi></math></span> of <span><math><mrow><mn>0</mn><mo>.</mo><mn>66</mn><mspace></mspace><mo>±</mo><mspace></mspace><mn>0</mn><mo>.</mo><mn>15</mn></mrow></math></span>, and MAE of <span><math><mrow><mn>14</mn><mo>.</mo><mn>64</mn><mspace></mspace><mo>±</mo><mspace></mspace><mn>3</mn><mo>.</mo><mn>04</mn></mrow></math></span>. Resting-state neural activity and structural integrity emerged as crucial predictors of aphasia severity, appearing in the top 20% of predictor combinations for both SVR and RF. Finally, the feature selection method revealed that functional connectivity in both hemispheres and between homologous language areas is critical for predicting language outcomes in patients with aphasia. The statistically significant difference in performance between the model using only single modality and the optimal multi-modal SVR/RF model (which included both resting-state connectivity and structural information) underscores that aphasia severity is influenced by factors beyond lesion location and volume. These findings suggest that integrating multiple neuroimaging modalities enhances the prediction of language outcomes in aphasia beyond lesion characteristics alone, offering insights that could inform personalized rehabilitation strategies.</div></div>\",\"PeriodicalId\":19299,\"journal\":{\"name\":\"NeuroImage\",\"volume\":\"317 \",\"pages\":\"Article 121300\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NeuroImage\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1053811925003039\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1053811925003039","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
Aphasia severity prediction using a multi-modal machine learning approach
The present study examined an integrated multiple neuroimaging modality (T1 structural, Diffusion Tensor Imaging (DTI), and resting-state FMRI (rsFMRI)) to predict aphasia severity using Western Aphasia Battery-Revised Aphasia Quotient (WAB-R AQ) in 76 individuals with post-stroke aphasia. We employed Support Vector Regression (SVR) and Random Forest (RF) models with supervised feature selection and a stacked feature prediction approach. The SVR model outperformed RF, achieving an average root mean square error (RMSE) of , Pearson’s correlation coefficient () of , and mean absolute error (MAE) of , compared to RF’s RMSE of , of , and MAE of . Resting-state neural activity and structural integrity emerged as crucial predictors of aphasia severity, appearing in the top 20% of predictor combinations for both SVR and RF. Finally, the feature selection method revealed that functional connectivity in both hemispheres and between homologous language areas is critical for predicting language outcomes in patients with aphasia. The statistically significant difference in performance between the model using only single modality and the optimal multi-modal SVR/RF model (which included both resting-state connectivity and structural information) underscores that aphasia severity is influenced by factors beyond lesion location and volume. These findings suggest that integrating multiple neuroimaging modalities enhances the prediction of language outcomes in aphasia beyond lesion characteristics alone, offering insights that could inform personalized rehabilitation strategies.
期刊介绍:
NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.